跳到主要內容

簡易檢索 / 詳目顯示

研究生: 彭曉琪
Hsiao-Chi Peng
論文名稱: 動態用路人均衡雙邊限制起迄/出發時間/路徑選擇雙層模型之研究
Dynamic User Equilibrium Doubly Constrained Origin-Destination /Departure Time/ Route Choice Bi-level Programming Model
指導教授: 陳惠國
Huey-Kuo Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 133
中文關鍵詞: 變分不等式動態用路人均衡雙邊限制出發時間號誌時制容量限制雙層規劃流線對角拉氏法
外文關鍵詞: variational inequality, dynamic user-equilibrium
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究並利用雙層規劃方法(Bi-level Programming Approach)構建動態號誌時制控制模型,上層模型為動態號誌時制最佳化模型,為求系統之總旅行時間最小化,下層模型為動態用路人均衡雙邊限制起迄/出發時間/路徑選擇模型,即用路人依據其最小旅運成本之觀念於適當時間出發,到達其目的地,同時滿足起迄對旅次選擇之均衡條件。透過變分不等式敏感度分析理論,以卓訓榮(1991)提出之廣義反矩陣方法(Generalized Inverse Approach)獲得敏感度分析資訊,發展動態號誌時制控制(雙邊限制)問題之求解演算法,最後以測試範例證實模型及演算法之正確性。


    This thesis, as follow-up study of Ying-Chun CHEN(1999), Tsung-Yi LEE(2000), attempts to further some important issues based on the dynamic user-equilibrium doubly constrained origin-destination /departure time/route choice model formulated using variational inequality approach and the solution algorithm of my model is using streamlined diagonalization lagrangian(GP) method to solves super network problem. As a result of road has link capacity constraint in the actual network, in order to my model conform to practicality condition, attempt to incorporate inflow link capacity constrained into it, and formulated the dynamic capacitated user-equilibrium doubly constrained origin-destination/departure time/route choice model. And numerical examples are provided for test and analysis.
    That uses bi-level programming method to formulate the dynamic signal timings control (DSTC) model. The upper level is dynamic signal timings optimal model, it tries to minimum the total travel cost by allocating the green times and determining link capacities, and the lower level is dynamic user-equilibrium doubly constrained origin-destination /departure time/route choice model, based on the fixed link capacities , searches the shortest travel time time-route for use. In accordance with variational inequality sensitivity analysis theory attain sensitivity analysis information by generalized inverse approach and developing solution algorithm. Finally, making several numerical examples to verify this research is correctly.

    中文摘要i 英文摘要ii 誌謝iii 目錄iv 圖目錄vii 表目錄viii 第一章 緒論1 1.1 研究動機1 1.2 研究目的2 1.3 研究範圍與內容2 1.3.1 研究假設2 1.3.2 研究範圍3 1.4 研究流程4 第二章 文獻回顧5 2.1 起迄對旅次選擇與交通量指派整合模型5 2.2 路段容量限制8 2.3 變分不等式敏感度分析9 2.4 小結11 第三章 動態用路人均衡雙邊限制起迄/出發時間/路徑選擇模型12 3.1動態用路人均衡雙邊限制起迄/出發時間/路徑選擇模型12 3.1.1均衡條件12 3.1.2模型建立14 3.1.3對等性分析15 3.1.4修正時空路網18 3.2 求解演算法19 3.2.1 巢化對角拉氏法19 3.2.2 流線對角拉式法28 3.3 範例測試33 3.3.1 輸入資料33 3.3.2輸出資料34 3.3.3 運算績效之比較41 3.4 小結42 第四章 含容量限制之動態用路人均衡雙邊限制起迄/出發時間/路 徑選擇模型44 4.1模型構建45 4.1.1均衡條件45 4.1.2 模型建立47 4.1.3 對等性證明48 4.2 一般化感知旅行成本53 4.3 求解演算法55 4.4路網測試58 4.4.1輸入資料58 4.4.2 輸出結果60 4.5 小結67 第五章 動態網路號誌時制控制模型69 5.1 模型構建70 5.2 以廣義反矩陣進行敏感度分析72 5.2.1 變分不等式敏感度分析原理72 5.2.2 變分不等式敏感度分析在網路均衡問題之運用75 5.2.3 利用廣義反矩陣進行敏感度分析76 5.3 求解演算法80 5.4 數例測試88 5.4.1 動態網路號誌控制系統88 5.4.1.1 輸入資料88 5.4.1.2輸出資料89 5.4.2動態網路號誌時制控制之雙邊限制模型95 5.4.2.1輸入資料95 5.4.2.2 輸出資料97 5.5 小結106 第六章 結論與建議108 6.1 結論108 6.2 建議110 符號說明116 附錄A121 附錄B 動態用路人均衡雙邊限制起迄/出發時間/路徑選擇模型之 測試路網流量型態123 附錄C130 C.1輸入資料130 C.2輸出資料131

    1.王中允,1999,路段容量限制動態用路人旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
    2.李宗益,2000,含額外限制式動態用路人均衡模型之研究,國立中央大學土木工程學系碩士論文,中壢。
    3.卓訓榮,1991,「以廣義反矩陣方法探討均衡路網流量的敏感性分析」,運輸計畫季刊,第20卷,第1期,1-14。
    4.卓訓榮,羅仕京,1999,「以廣義反矩陣的特性推導路徑非負流量之研究」,運輸學刊,第十一卷,第二期,頁39-48。
    5.卓訓榮,1992「最短距離法與廣義反矩陣方法探討均衡路網流量的敏感度分析之比較」,運輸計畫計刊,第二十一卷,第一期,頁1-14
    6.卓訓榮,林培煒,1999,「均衡路網流量敏感度分析路網資訊獨立性之研究」,運輸學刊,第十一卷,第四期,頁73-86。
    7.周鄭義,1999,動態號誌時制最佳化之研究—雙層規劃模型之應用,國立中央大學土木工程學系碩士論文,中壢。
    8.張佳偉,1997,路徑變數產生法求解動態交通量指派模型之效率比較,國立中央大學土木工程學系碩士論文,中壢。
    9.陳惠國,王中允,1999,「拉氏演算法求解路段容量限制動態用路人路徑選擇問題之比較」,中國土木水利工程學刊(已接受)。
    10.陳惠國,陳穎俊,1998,「雙邊限制之旅次分佈與交通量指派模型求解效率之比較」,中華民國運輸學會第十三屆學術論文研討會,新竹,頁721-730。
    11.陳穎俊,1999,動態用路人均衡雙邊限制模型之研究,國立中央大學土木工程學系碩士論文,中壢。
    12.黃士沛,2000,不同決策變數下動態用路人均衡路徑選擇模型之研究,國立中央大學土木工程學系碩士論文,中壢。
    13.賴皆錞,2000,動態號誌時制控制模型求解演算法之研究,國立中央大學土木工程學系碩士論文,中壢。
    14.Beckmann M, Mcguire C.B. and Winsten C.B., 1956, Studies in the Economics of transportation, Yale University Press,New Haven ,C.T.
    15.Bertsekas D.P., 1982, Constrained Optimization and Lagrange Multiplier Method, Academic Press, Inc, New York.
    16.Chen H.K., 1999, Dynamic Travel Choice Models: A Variational Inequality Approach, Springer-Verlag, Berling.
    17.Chen H.K., 2001, Advanced Dynamic Travel Choice Models, Dept. of Civil Eng., Nat''l Central U., Taiwan.
    18.Chen H.K., and Wang C.Y., 1999a, “Dynamic Capacitated User-Optimal Route Choice Problem,” Transportation Research Record, No 1667, pp.16-24.
    19.Chen H.K., and Wang C.Y., 1999b, “Dynamic User-Optimal Route Choice Problem with First-In-First-Out Requirement,” Journal of Operations Research (Submitted).
    20.Chen H.K., Chang C.W., and Chang M.S., 1999, “Comparison of Link-Based versus Route-Based Algorithms in the Dynamic User-Optimal Route Choice Problem,” Transportation Research Record, No 1667, pp.114-120.
    21.Chen H.K. and Hsueh C.F., 1996, “A Dynamic User-Optimal Route Choice Problem Using a Link-Based Variational Inequality Formulation,” Paper Presented at The 5th World Congress of the RSAI Conference, Tokyo, Japan.
    22.Chen H.K. and Hsueh C.F., 1998, “A Model and an Algorithm for the Dynamic User-Optimal Route Choice Problem,” Transportation Research, Vol. 32(B), No. 3, pp. 219-234.
    23.Cho H.J., and Chen H.H., 1991, “Bilevel Optimization and Resource Allocation in Transportation Network Signal Design,” Transportation Planning Journal, Vol. 20, pp. 461-474.
    24.Cho H.J., and Lo S.C., 2000, “Solving Bilevel Network Design Problem Using a Linear Reaction Function without Nondegeneracy Assumption,” Transportation Research Record, No 1667, pp. 96-106.
    25.Cho H.J., and Smith T.E., and Friesz T.L., 2000, “A Reduction Method for Local Sensitivity Analyses of Network Equilibrium Arc Flows,” Transportation Research, Vol. 34B, pp. 31-51.
    26.Evans S.P., 1973, Some Applications of Optimizations Theory in Transport Planning, Ph.D. Thesis, Research Group in Traffic Studies, University of London, London
    27.Evans S.P., 1976, “Derivation and Analysis of Some Models for Combining Trip Distribution and Assignment,” Transportation Research, Vol. 10, pp. 37-57.
    28.Fiacco A.V. and McCormick G.p., 1968, Nolinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley & Sons New York.
    29.Fisk C.S., 1984, “Game Theorem and Transportation System Modelling,” Transportation Research, 18(B), pp. 301-313.
    30.Florian M., Nguyen S. and Ferland J., 1975, “On the Combined Distribution-Assignment of Traffic,” Transportation Science, Vol. 9, pp. 43-53.
    31.Frank C., 1978, A Study of Alternative Approaches to Combined Trip Distribution-Assignment Modeling, Ph.D. Thesis, Department of Regional Science, University of Pennsylvania, Philadelphia,.PA.
    32.Friesz T.L., Tobin R.L., Cho H.J., and Mehta N.L., 1990, “Sensitivity Analysis Based Heuristic Algorithm for Mathematical Programs with Variational Inequality Constraints,” Mathematical Programming, Vol. 48, pp. 265-284.
    33.Harker P.T., and Choi S.C., 1987, A Penalty Function Approach for Mathematical Programs with Variational Inequality Constraints, Decision Science Working Paper 87-09-08, University of Pennsylvania.
    34.Jayakrishnan R., Tsai W.K., Prashker J.N. and Rajadhyaksha S., 1994, “A Faster Path-Based Algorithm for Traffic Assignment,” Presented at The Transportation Research Board 73rd Annual Meeting, Washington, D. C., U.S.A.
    35.Larsson, T. and Patriksson, M., 1995,“An Augmented Lagrangean Dual Algorithm for Link Capacity Side Constrained Traffic Assignment Problems, ” Transportation Research, 29B, 433-455.
    36.Larsson, T. and Patriksson, M.,“1999,Side Constrained Traffic Equilibrium Models-Analysis,Computation and Application,” Transportation Research,33B,233-264.
    37.Luenberger D.G., 1984, Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Inc, America.
    38.Magnanti T.L., and Wong R.T., 1984, “Network Design and Transportation Planning:Models and Algorithms,” Transportation Science, Vol. 18, No. 1, pp. 1-55.
    39.Marcotte P., 1986, “Network Design Problem with Congestion Effects:A Case of Bilevel Programming,” Mathematical Programming, Vol. 34, pp. 142-162.
    40.Marcotte P., 1988, “A Note on Bilevel Programming Algorithm by LeBlanc and Boyce,” Transportation Research, Vol. 22B, No. 3, pp. 233-237.
    41.Miller T.C., Tobin R.L., and Friesz T.L, 1991, “Stackelberg Games on a Network with Cournot-Nash Oligopolistic Competitors,” Journal of Regional Science, Vol. 31, No. 4, pp. 435-454.
    42.Murchland J.D., 1966, “Some Remarks on the Gravity Model of Traffic Distribution and an Equivalent Maximization Formulation,” LSE-TNT-38, Transport Network Theory Unit, London School of Economics, London.
    43.Patriksson M., 1994, The Traffic Assignment Problem: Models and Methods, Utrecht The Netherlands.
    44.Nagurney A., 1993, Network Economics: A Variational Inequality Approach, Kluwer Academic.
    45.Sheffi Y., 1984, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentical-Hall.
    46.Smith M.J., 1993, “A New Dynamic Traffic Model and the Existence and Calculation of Dynamic User Equilibria on Congested Capacity-Constrained Road Networks,” Transportation Research, Vol. 27B, pp. 49-63.
    47.Tobin R.L., 1986, “Sensitivity Analysis for Variational Inequalities,” Journal of Optimization Theory and Applications, Vol. 48, No. 1, pp. 191-204.
    48.Tobin R.L. and Friesz T.L., 1988, “Sensitivity Analysis for Equilibrium Network Flow,” Transportation Science, Vol. 22, No. 4, pp. 242-250.
    49.Tomlin J.A., 1971, “Mathematical Programming Model for the Combined Distribution-Assignment of Traffic,” Transportation Science, Vol. 5, pp. 122-140.

    QR CODE
    :::