| 研究生: |
邱威智 Wei-Chih Chiu |
|---|---|
| 論文名稱: |
逆斷層錯動下土層應力場受淺基礎載重及位置之影響 |
| 指導教授: |
黃文昭
Wen-Chao Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 164 |
| 中文關鍵詞: | 逆斷層 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位處於歐亞大陸板塊與菲律賓海板塊之交界,所以在進行工
程設計,經常要考慮地震的作用,特別是位於活動斷層附近的區域,
必須更加留意斷層錯動造成的破壞,近年來,如台灣集集大地震、土
耳其Izmit 地震、中國汶川大地震、日本福島大地震等活動斷層造成
的災害,均使生命財產遭受到嚴重的損害。通常在較大地震過後的現
場可以發現,結構的傾倒或是變形,主要受到斷層錯動造成地表變形
的影響。藉由觀察斷層錯動和基礎位移或變形下的互制關係,可以發
現斷層破裂路徑似乎會轉向,進而避免結構的破壞。因此近幾年來有
許多研究考慮使用有限元素法(Finite Element Method, FEM)與離散元
素法(Discrete Element Method, DEM)等數值方法進行模擬,然而斷層
錯動往往達到數公尺,當斷層變形過大時,有限元素法網格會造成較
大的變形,所以在本研究中為了得到較精確的結果,考慮使用離散元
素法進行逆斷層模擬。
研究中,參考張有毅(2013)砂箱試驗之離心模型試驗,使用
PFC2D(Particle Flow Code in Two Dimension)在80g 下進行淺基礎與
斷層的互制關係模擬,其斷層最大垂直位移(h)為5cm。模擬中所採
用的變因包括:(1)基礎的載重大小和(2)基礎相對自由場的出露距離大
II
小,然後利用這些變因來探討淺基礎與斷層互制關係的原因。首先
藉由顆粒的旋轉角來判斷基礎在逆斷層錯動下剪裂帶的發展狀況,
然後探討基礎相對自由場的出露距離大小與基礎的載重大小兩種變
因,這兩種變因比較基礎在逆斷層錯動下剪裂帶的發展長度對基礎
影響大小;近一步得知應力在模型中不同位置的變化,按照深度分
成淺、中、深三層,再依照位置分成上盤、過渡區、下盤三個區
域,依此原則設置觀測圓讀取數據,再將最後模擬結果藉由應力路
徑,探討基礎相對自由場的出露距離大小與基礎的載重大小兩種變
因,這兩種變因比較基礎在逆斷層錯動下土層應力場發生破壞的狀
況,藉由應力路徑的分析了解基礎在逆斷層錯動下土層發生破壞的
過程;由剪裂帶的發展狀況及應力場的變化可以比較出兩個變因的
影響大小。
Taiwan is located between Eurasian plate and Philippine sea plate, so
the effect of earthquake must be considered in the engineering design. The
area close to the active fault must be paid more attention to the damage
from the fault rupture. In recent years, events such as the Chi-Chi
earthquake, Izmit earthquake, Wenchuan earthquake and Fukushima
earthquake caused serious damages to the structures and lives. After the
earthquake, the propagation of reverse faults through soil layers to the
ground surface has been observed to cause damages to infrastructure.
Furthermore, the interaction between a fault propagating through a sand
layer and a shallow foundation can be beneficial for heavily loaded
foundations because this loading condition can deviate fault away from the
foundation.
In this research, we have used the models in Chang (2013) as base
models, in which centrifuge modelling of fault–foundation interaction was
simulated. The tests revealed interaction between fault and foundation and
found that the foundation and soil response depend on the foundation
loading, position, and breadth.
To observe the variation of stress states in different location within the
soil layers with different parameters, the model is separated into shallow
layer, medium layer and deep layer in the vertical direction, and divided
into three zones depending on the horizontal location (hanging wall zone,
triangular shear zone and footwall zone). Measurement circles are placed
in the model to measure the stresses according to the above zoning and the
results are shown by stress paths. The results show that compression
between footing wall and hanging wall affects the development of
horizontal stress obviously, it increases the values of horizontal stress.
Finally, the effect of foundation location and loadings are discussed by the
development of shear zones and stress paths.
1. 潘國樑,工程地質學導論,科技圖書,臺北市,第173-151 頁
(2007)。
2. 宋丘言,「使用離散元素法進行乾砂直剪試驗模擬」,碩士論文,
國立中央大學土木工程所,桃園(2012)。
3. 廖泓韻,以微觀角度探討顆粒狀材料在直剪試驗下之力學行為,
碩士論文,國立中央大學土木工程所,桃園(2013)。
4. 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯
動地表及地下變形」,博士論文,國立中央大學土木工程所,桃
園(2013)。
5. 曾議德,「逆斷層錯動下土層應力場及微觀組構變化初探」,碩士
論文,國立中央大學土木工程所,桃園(2016)。
6. Anastasopoulos, I., G. Gazetas, M.ASCE, M. Bransby, M. Davies and
A. El Nahas., “Normal Fault Rupture Interaction with Strip
Foundations,” Journal of Geotechnical and Geoenvironmental
Engineering, Vol. 135, No. 3, pp.359-370(2009)
7. Anastasopoulos, I., G. Gazetas, M. Bransby, M. Davies and A. El
Nahas., “Fault Rupture Propagation through Sand: Finite-Element
Analysis and Validation through Centrifuge Experiments,” Journal of
Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 8,
pp.943-958 (2007).
8. Bransby, M.F., Davies, M.C.R., El Nahas, A., Nagaoka, S.,
“Centrifuge modelling of reverse fault–foundation interaction,” Bull
Earthquake Eng, Vol. 6, pp. 607-628 (2008).
9. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung,
W.Y., Lin, Y. H. ”Use of centrifuge experiments and discrete elementanalysis to model the reverse fault slip,” International Journal of Civil
Engineering, Vol. 11, No. 2, pp. 91-95 (2013).
10. Cundall, P. A., “A Computer Model for Simulating Progressive Large
Scale Movements in Blocky Rock Systems,” Proceedings of the
Symposium of the International Society of Rock Mechanics, Vol. 1,
No. II-8, pp. 129-136 (1971).
11. Cundall, P. A., and Strack, O. D. L., “A Discrete Numerical Model for
Granular Assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65(1979).
12. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung,
W.Y., Lin, Y. H. ”Evolution of the surface deformation profile and
subsurface distortion zone during reverse faulting through overburden
sand,” Engineering Geology, Vol. 184, pp.52-70 (2015).
13. Das, B.M., Sobhan, K., Principle of Geotechnical Engineering,
Cengage Learning, pp. 318-323 (2010).
14. Deresiewicz, H., “Mechanics of Granular Matter,” Advances in
Applied Mechanics, Vol. 5, 233-306(1958).
15. Hibbeler, R.C., Mechanics of Materials, Pearson, pp. 510-511 (2010).
16. Huang, W.C., Sung, C.Y., Liao, H.Y., Chu, S.S., “Micromechanical
behavior of granular materials in direct shear modeling,” Journal of
the Chinese Institute of Engineers, Vol. 38, No.4, pp. 469-480 (2015).
17. Itasca Consulting Group Inc. PFC2D (Particle Flow Code in 2
Dimensions). Version 4.0 Minneapolis, MN: ICG(2008).
18. Lambe, T.W., “Stress Path Method”, Journal of the Soil Mechanics
and Foundations Division, ASCE, Vol. 93, No. 6, pp. 309-301(1967).
19. Yimsiri, S., Soga, K., “Micromechanics-basedstress–strain behavior of
soils at small strains,” Géotechnique, Vol. 50, No. 5, pp. 559-571
(2000).