跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮氏春
Xuan Thi Nguyen
論文名稱: 利用ALOS衛星時序影像測量越南胡志明市的地層下陷
Land Subsidence in Ho Chi Minh city, Vietnam Detected by ALOS InSAR Time-series
指導教授: 張中白
Chung-Pai Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 地表變形越南胡志明市雷達干涉
外文關鍵詞: surface deformation, Ho Chi Minh city, radar interferometry
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地層下陷最常發生在市區,而此災害可能導致建築物破裂或河水氾濫甚至改變河流的河道。儘管有精確的資訊顯示地層下陷的重要性,然而傳統的井下地層下陷監測技術,除了技術上較昂貴,也耗費人力與資源,更缺乏大範圍全面性的地層下陷資訊。近年來,SAR衛星影像干涉技術已經廣泛應用於監測地表變形,尤其是基於多時序的影像數據分析方法,在本研究中,我們使用ALOS衛星影像(L波段)多時序分析法 ,共18幅衛星影像來監測越南胡志明市於2006年12月至2010年12月期間之地層下陷的情形,因此我們應用時序影像持續監測與測量越南胡志明市的下陷情形。假設測量的結果主要是對應於垂直分量的下陷量,我們發現下陷區域沿著西貢河與市中心的南部最為顯著。最大下陷速率可達-66毫米/年。總而言之,雷達差分干涉技術的結果比對水準資料可得到相當高的一致性。


    Land subsidence has become the most common hazard in urban area that could lead to cracking buildings and infrastructures, extending the flooding area or even change the river path. Despite deriving precise information, conventional subsidence monitoring techniques are considered as costly, man-power consuming and lack of comprehensive information. Recently, Interferometric synthetic aperture radar (InSAR) has become a widely used geodetic technique for monitoring the deformation of the Earth’s surface, especially methods based on the use of a multi-temporal dataset. In this study, we used a stack of 18 SAR images acquired from L-band PALSAR sensor on board the ALOS satellite to derive the subsidence information of Ho Chi Minh City, Vietnam over the period of December 2006 to December 2010. The Stanford Method for Persistent Scatterers (StaMPS) Multi-Temporal Interferometry (MTI) approach is chosen to take advantages of both the persistent scatterers and the distributed scatterers, which could be used as monitoring points to measure the subsidence process. Assume the subsidence in this area mostly corresponds to vertical components, we found subsidence patterns along Saigon River and in the South of the city. Maximum subsidence rate reaches up to -66 mm/year in vertical direction. Finally, InSAR derived result and previous levelling data are taken into comparison to find the correlation between the two results.

    Abstract ii Acknowledgment iv Chapter 1: Introduction 1 Chapter 2: Basics of Radar Remote Sensing 4 2.1 Basics of Synthetic Aperture Radar 4 2.1.1. SAR data acquisition 5 2.1.2. SAR Sensors 6 2.1.3. Signal Properties 7 2.1.3.1. Properties of image amplitude 7 2.1.3.2. Properties of image phase 8 2.2. Basics of InSAR 9 2.2.1. Principle of InSAR 9 2.2.2. Repeat-track Interferometry 11 2.2.3. Applications of InSAR 11 2.2.3.1. DEM generation 11 2.2.3.2. Crustal deformation mapping 13 2.2.3.3. Landscape characterization mapping 14 2.2.4. Limitations of InSAR 14 Chapter 3: Study area 23 3.1. Ho Chi Minh City 23 3.2. Data 23 3.2.1. DEM 24 3.2.2. ALOS PALSAR 24 Chapter 4: Methodology 31 4.1. PSInSAR 31 4.1.1. General Concept 31 4.1.2. PSInSAR processing 32 4.2. SBAS 36 4.2.1. SBAS processing 37 Chapter 5: Result and discussion 43 5.1. Land subsidence analysis in Ho Chi Minh City 43 5.2. Comparison of results between PSI and SBAS approaches 47 5.3. Urban flooding interpretation 49 Chapter 6: Conclusions 60 References 61

    Bamler, R. (2000). Principles Of Synthetic Aperture Radar. Surveys in Geophysics, 21(2), 147-157. doi: 10.1023/a:1006790026612
    Bamler, R., Eineder, M., Kampes, B., & Adam, N. (2003). SRTM and beyond: current situation and new developments in spaceborne InSAR. Paper presented at the ISPRS Joint Workshop, Hannover 2003. http://www.ipi.uni-hannover.de/html/publikationen/2003/workshop/bamler.pdf
    Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14(4), R1-R54. doi: Doi 10.1088/0266-5611/14/4/001
    Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. doi: 10.1109/Tgrs.2002.803792
    Burgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28, 169-209. doi: DOI 10.1146/annurev.earth.28.1.169
    Chang, C. P., Yen, J. Y., Hooper, A., Chou, F. M., Chen, Y. A., Hou, C. S., . . . Lin, M. S. (2010). Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques. Terrestrial Atmospheric and Oceanic Sciences, 21(3), 447-461. doi: 10.3319/Tao.2009.11.20.01(Th)
    Colesanti, C., Ferretti, A., Novali, F., Prati, C., & Rocca, F. (2003). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1685-1701. doi: 10.1109/Tgrs.2003.813278
    Cumming, I. G., & Frank, H. W. (2005). Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation: Artech House.
    Curlander, J. C., & McDonough, R. N. (1991). Synthetic Aperture Radar: Systems and Signal Processing: WILEY.
    Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., & Massonet, D. (2007). InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation. ESA Training Manual, 19.
    Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202-2212. doi: Doi 10.1109/36.868878
    Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi: Doi 10.1109/36.898661
    Gale, J., Hendriks, C., Turkenberg, W., Ferretti, A., Tamburini, A., Novali, F., . . . Rucci, A. (2011). 10th International Conference on Greenhouse Gas Control TechnologiesImpact of high resolution radar imagery on reservoir monitoring. Energy Procedia, 4, 3465-3471. doi: http://dx.doi.org/10.1016/j.egypro.2011.02.272
    Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (2000). Measuring Land Subsidence From Space. from http://pubs.usgs.gov/fs/fs-051-00/
    Goldstein, R. (1995). Atmospheric limitations to repeat-track radar interferometry. Geophysical Research Letters, 22(18), 2517-2520. doi: 10.1029/95GL02475
    Graham, L. C. (1974). Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62(6), 763-768. doi: 10.1109/PROC.1974.9516
    Gupta, R. V. (2003). Remote sensing geology: Springer-Verlag Berlin Heidelberg.
    Hanssen, R. F. (2001). Radar Interferometry – Data Interpretation and Error Analysis: Kluwer Academic
    Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16). doi: Artn L16302
    10.1029/2008gl034654
    Hooper , A., Bekaert, D., & Spaans, K. (2013). StaMPS/MTI Manual Version 3.3b1.
    Hooper, A., Bekaert, D., Spaans, K., & Arikan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13. doi: 10.1016/j.tecto.2011.10.013
    Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. Journal of Geophysical Research-Solid Earth, 112(B7). doi: Artn B07407
    10.1029/2006jb004763
    Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23). doi: Artn L23611
    10.1029/2004gl021737
    Ketelaar, V. B. H. (2009). Satellite Radar Interferometry: Subsidence Monitoring Techniques
    Springers Netherlands.
    Le, S. T., & Chang, C. P. (2015). Surface deformation assessments in Hanoi, Vietnam using ALOS PALSAR interferometry. Paper presented at the The 36th Asian Conference on Remote Sensing, Manila, Philippines.
    Leake, S. A. (2013). Land Subsidence From Ground-Water Pumping. from http://geochange.er.usgs.gov/sw/changes/anthropogenic/subside/
    Li, F. K., & Goldstein, R. M. (1990). Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Transactions on Geoscience and Remote Sensing, 28(1), 88-97. doi: 10.1109/36.45749
    Lu, Z., Kwoun, O.-I., & Rykhus, R. P. (2007). Interferometric synthetic aperture radar (InSAR)—its past, present and future. Photogrammetric Engineering and Remote Sensing, 73(3), 217-221.
    Lu, Z., Kwoun, O., & Rykhus, R. (2007). Interferometric synthetic aperture radar (InSAR): Its past, present and future. Photogrammetric Engineering and Remote Sensing, 73(3), 217-221.
    Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Reviews of Geophysics, 36(4), 441. doi: 10.1029/97rg03139
    Minh, D., Van Trung, L., & Toan, T. (2015). Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data. Remote Sensing, 7(7), 8543.
    Minh, D. H. T., Van Trung, L., & Toan, T. L. (2015). Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data. Remote Sensing, 7(7), 8543-8562. doi: 10.3390/rs70708543
    Minnett, P. J. (1984). Satellite Microwave Remote Sensing. T. D. Allan (Editor). Ellis-Horwood Series in Marine Science, Chichester. 1983. Pp. 526. £45.00. Quarterly Journal of the Royal Meteorological Society, 110(465), 771-773. doi: 10.1002/qj.49711046514
    Raucoules, D., Colesanti, C., & Carnec, C. (2007). Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Geoscience, 339(5), 289-302. doi: 10.1016/j.crte.2007.02.002
    Rogers, A. E. E., & Ingalls, R. P. (1969). Venus: mapping the surface reflectivity by radar interferometry. Science, 797-799. doi: 10.1126/science.165.3895.797
    Thoang, T. T., & Giao, P. H. (2015). Subsurface characterization and prediction of land subsidence for HCM City, Vietnam. Engineering Geology, 199, 107-124. doi: 10.1016/j.enggeo.2015.10.009
    Tran Quoc, C., Dinh Ho Tong, M., Le Van, T., & Thuy Le, T. (2015, 26-31 July 2015). Ground subsidence monitoring in Vietnam by multi-temporal InSAR technique. Paper presented at the Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International.
    Zang, Z. Y. (2015). Monitoring and Predicting Railway Subsidence Using InSAR and Time Series Prediction Techniques. The University of Birmingham, UK.
    Zebker, H. A., & Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91(B5), 4993-4999. doi: 10.1029/JB091iB05p04993
    Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., & Werner, C. L. (1994). On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth, 99(B10), 19617-19634. doi: 10.1029/94JB01179
    Zebker, H. A., & Villasenor, J. (1992). Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950-959. doi: Doi 10.1109/36.175330
    Zisk, S. H. (1972). A new, earth-based radar technique for the measurement of lunar topography. The moon, 4(3), 296-306. doi: 10.1007/bf00561997

    QR CODE
    :::