跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李宜馨
Yi-hsin Li
論文名稱: 具共變數韋能衰退隨機過程之經驗貝氏可靠度分析
An Empirical Bayesian Reliability Analysis of Degradation Test Based on Wiener Process with Covariates
指導教授: 樊采虹
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 衰退試驗韋能隨機過程馬可夫鏈蒙地卡羅方法貝氏方法經驗貝氏
外文關鍵詞: degradation test, Wiener process, Markov chain Monte Carlo, Bayesian approach, empirical Bayes
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文考慮具共變數韋能衰退隨機過程之貝氏可靠度分析, 其中漂移係數為共變數之線性函數。實務上同款產品的衰退特徵可能存在個別差異, 並不適合用同一模型來描述所有個體, 因此我們以三種不同的模型, 在共同的先驗分配下, 分別經由馬可夫鏈蒙地卡羅方法(MCMC) 進行貝氏可靠度推論。另一方面當主觀先驗資訊微弱或無法確認資料來源的真實模型時, 我們先經由觀測資料估計具個別差異之模型中參數的先驗分配建立經驗貝氏模型, 模擬結果驗証經驗貝氏方法可在模型不確定時取其折衷進而降低選模錯誤的風險。也就是說, 在先驗資訊不足或不確定產品間是否有差異, 經驗貝氏模型可提供較穩健的可靠度推論。


    For high reliability products, the degradation test can provide more information than accelerated life test to assess the lifetime distribution. In this thesis, we consider the degradation test based on Wiener processes in which the drift coefficient is linear in the covariates. In practice, there may have unit-to-unit variantion of the products with the same type. Therefore, it may not be appropriate using the same model to fit all products. Here, we aim on the Bayesian approach with three difference models. Empirical Bayes methods are used to determine the prior parameters using all the observed data. It not only provides a compromise in the model uncertainty with the advantage of ”borrowing the strength” among the data, but also solve the situation when the prior information is vague. Further, we are interest in reliability inference under given covariates. Simulation study shows that the empirical Baysian method can reduce the risk for fitting wrong models and yield robust reliability inference.

    摘要i Abstract ii 誌謝iii 目錄iv 圖目次vi 表目次vii 第一章緒論1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章具共變數韋能衰退隨機過程之貝氏可靠度分析7 2.1 韋能衰退隨機過程與失效時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 具共變數之韋能隨機過程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 具個別差異性之高維度模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 具部分差異性之折衷模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 無個別差異之低維度模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 產品失效時間之貝氏推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第三章經驗貝氏模型17 3.1 經驗貝氏方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 EM演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 共軛性估計法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第四章模擬研究24 4.1 具個別差異性之高維度模型資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 具部分差異性之折衷模型資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 無個別差異之低維度模型資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 穩健性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 案例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 第五章結論與展望50 參考文獻51

    [1] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second Edition), Springer-Verlag, New York.
    [2] Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83–87.
    [3] Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution. Theory,Methodology and Applications, Marcel Dekker, New York.
    [4] Carlin, B. P. and Louis, T. A. (2000). Bayes and Eempirical Bayes Methods for Data Analysis, Chapman and Hall, New York.
    [5] Doksum, K. A. and Hoyland, A. (1992). Models for variable-stress accelerated life testing experiments based on Wiener process and the inverse Gaussian distribution. Technometrics, 34, 74–82.
    [6] Efron, B. (1979). Bootstrap method: another look at the jacknife. Annals of Statist , 17, 1–2682.
    [7] Fan, T. H. and Wang, Y. F. (2013). An empirical Bayesian forecast in the threshold stochastic volatility models. Journal of Statistical Computation and Simulation, 83, 486–500.
    [8] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
    [9] Hong, Y., Duan, Y., Meeker, W. Q., Stanley, D. L., and Gu, X. (2014). Statistical methods for degradation data with dynamic covariates information and an application to outdoor weathering data. To appear in Technometrics, p. DOI:10.1080/00401706.2014.915891.
    [10] Hu, C. H., Lee, M. Y., and Tang, J. (2015). Optimum step-stress accelerated degradation test for Wiener degradation process under constraints. European Journal of Operational Research, 241, 412–421.
    [11] Jin, G., Matthews, D. E., and Zhou, Z. (2013). A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft. Reliability Engineering and System Safety, 113, 7–20.
    [12] Lawless, J. F. and Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 10, 213–227.
    [13] Liao, C. M. and Tseng, S. T. (2006). Optimal design for step-stress accelerated degradation test. IEEE Transactions on Reliability, 55, 59–66.
    [14] Ling, M. H., Tsui, K. L., and Balarkrishnan, N. (2015). Accelerated degradation analysis for the quality of a system based on the gamma process. IEEE Transactions on Reliability, 64, 463–472.
    [15] Morris, C. N. (1983). Parametric empirical Bayes inference: theory and applications. Journal of the American Statistical Association, 78, 47–65.
    [16] Morris, C. N. (1983). Natural exponential families with quadratic variance functions: statistical theory. Annals of Statistics, 11, 515–529.
    [17] Meeker, W. Q. and Escobar, L. A. (1993). A review of recent research current issues in accelerated testing. International Statistical Review, 61, 147–168.
    [18] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, Wiley, New York.
    [19] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley & Sons, New York.
    [20] Pettit, L. I. and Young, K. D. S. (1999). Bayesian analysis for inverse Gaussian lifetime data with measures of degradation. Journal of Statistical Computation and Simulation, 63, 217–234.
    [21] Padgeet, W. and Tomlinson, M. A. (2004). Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Analysis, 10, 191–206.
    [22] Park, C. and Padgett, W. J. (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Analysis, 11, 511–527.
    [23] Pan, Z. and Balarkrishnan, N. (2011). Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliability Engineering and System Safety, 96, 949–957.
    [24] Robbins, H. (1956). An empirical Bayes approach to statistics. In Proceeding Third Berkeley Symp.Mathematical Statistics and Probability, 1, 157–164.
    [25] Robinson, M. E. and Crowder, M. J. (2000). Bayesian methods for growth-curve degradation model with repeated measures. Lifetime Data Analysis, 6, 357–374.
    [26] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of Royal Statistical Society,Series B, 64, 583–639.
    [27] Tseng, S. T. and Peng, C. Y. (2004). Optimal burn-in policy by using an integrated Wiener process. IEEE Transactions on Reliability, 36, 1161–1170.
    [28] Touw, A. E. (2009). Bayesian estimation of mixed Weibull distributions. Reliability Engineering and System Safety, 94, 463–473.
    [29] Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Analysis, 1, 307–319.
    [30] Whitmore, G. A. and Schenkelberg, F. (1997). Modeling accelerated degradation data using Wiener diffusion with a scale transformation. Lifetime Data Analysis, 3, 27–45.

    QR CODE
    :::