跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張榮貴
Jung-Kuei Chang
論文名稱: 基於HPSO-TVAC演算法於多目標追蹤系統之研究
Multi-Objects Tracking Based on HPSO-TVAC Algorithm
指導教授: 鍾鴻源
Hung-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 粒子群最佳化演算法自組織隨時調變係數的粒子最佳化演算法物件追蹤物件偵測種子區域生長法
外文關鍵詞: PSO, HPSO-TVAC, object tracking, object detection, seeded region growing method
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了提升追蹤目標物的速度和解決目標物被遮蔽的問題,本論文採用改良的粒子最佳化演算法“自組織隨時調變係數的粒子最佳化演算法”來對目標物進行追蹤。
    HPSO-TVAC演算法主要利用族群之間各個成員的相互關係,使族群整體朝向更好的目標前進的一種演算法,並利用改良的自適應搜尋框,使搜尋框大小在追蹤目標追蹤不到的時候變大,在一直能追蹤到追蹤目標時,保持較小的大小,使粒子們能搜尋得更加精確,並能有效解決遇到遮蔽物的情況。
    改良的種子區域成長法,主要是改良產生種子的部分,使原本標記出來需要重新搜尋四鄰位置的種子數量減少,其目的是讓我們區分不同的目標物,並使各個目標物各自連成一塊,使我們可以算出各個目標的中心位置。
    本論文使用背景相減法以分離背景和移動目標,改良的種子區域生長法區分各個不連通的目標物,並且算出各個目標的中心位置,利用顏色直方圖來建構目標物的模型,以HPSO-TVAC來對各個目標物進行追蹤。最後比較其他不同的演算法進行模擬測試,並且將HPSO-TVAC實際測試於即時的多目標追蹤。


    In order to improve the tracking speed and solve the shadowing problem, this paper trace objects by “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients (HPSO-TVAC)”, which improved from PSO algorithm.
    We use the relationship between the members of the groups to make whole groups go along toward the way of better goals by HPSO-TVAC algorithm, and we also uses “adaptive searching window”. Then the searching window will zoom in or out which depends on global best fitness. While we can find the targets, we will make the searching window contains small, but while we cannot find the targets, we will let the searching window bigger to find the targets.
    The improved seeded region growing method, which we mainly improved the quantity of seeds, is presented in this study. We reduce quantity of seeds to increase the efficiency, and it can let us distinguish between different targets.
    In this study, we use background subtraction to distinguish background and moving objects, and we also use improved seeded region growing method to distinguish different targets. Then we use color histograms to build target models, and trace every targets by HPSO-TVAC algorithm.

    目錄 頁次 中文摘要 iii 英文摘要 iv 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1-1 簡介 1 1-2 研究動機與方法 1 1-3 文獻回顧與探討 2 1-4 主要貢獻 3 1-5 論文架構 4 第二章 軟硬體與系統模型 5 2-1 外部硬體 5 2-2 內部軟體 6 2-3 系統架構 7 第三章 移動物體偵測與建模 8 3-1 色彩空間轉換 8 3-1-1 RGB色彩空間 8 3-1-2 Lab色彩空間 9 3-1-3 YCBCR色彩空間 9 3-1-4 HSV色彩空間 10 3-2 移動物體偵測 11 3-2-1 時間軸上的中間值法(Temporal median) 12 3-2-2 非前景像素更新法(Selective update using non-foreground pixels) 12 3-2-3 卡爾曼濾波器(Kalman filter) 12 3-2-4 高斯混合(Mixture of Gaussians)(MoG) 12 3-3 形態學處理 13 3-3-1 膨脹(Dilation) 13 3-3-2 侵蝕(Erosion) 15 3-3-3 斷開(Opening) 16 3-3-4 閉合(Closing) 17 3-4 區域分割演算法 19 3-4-1 區域分裂與合併(Region Splitting and Merging) 19 3-4-2 行程標記法 20 3-4-3 種子區域生長法(Seeded Region Growing) 21 3-4-4 改良式種子區域生長法 23 3-5 目標物建模 36 第四章 移動物體追蹤方法與分析 42 4-1 HPSO-TVAC演算法 43 4-1-1 基本的PSO演算法 43 4-1-2 HPSO-TVAC演算法 46 4-2 解空間與搜尋空間 52 4-3 適應函數分析 56 4-4 遮蔽問題處理 57 4-5 偵測與追蹤流程 62 第五章 實驗結果與討論 64 5-1 模擬實驗 64 5-2 實際實驗測試 71 第六章 結論與建議 83 6-1 結論 83 6-2 建議 84 參考文獻 85 文章發表 90

    參考文獻

    [1] M. Kass, A. Witkin and D. Terzopoulos, “Snake: active contour models”, IJCV. , 1(4): 321-332, 1988.
    [2] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: real-time tracking of the human body,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 780–785, July 1997.
    [3] N. Peterfreund, “The Velocity Snake,” Proc. IEEE Nonrigid and Articulated Motion Workshop, Virgin Islands, 1997.
    [4] N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 564–569, June 2000.
    [5] D.-S. Jang and H.-I. Choi, “Active models for tracking moving objects, ” Pattern Recognit., vol. 33, no. 7, pp. 1135–1146, 2000.
    [6] D. Comaniciu , V. Ramesh,Meer, P. Meer, “Kernel-based object tracking”, Real-Time Vision & Modeling Dept., Siemens Corporate Res., Princeton, NJ, USA.
    [7] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc.British Machine Vision Conf., pp. 262–352, 2000.
    [8] S. Ju, M. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 38–44. 1996.
    [9] R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans. on Pattem Analysis and Machine Intelligence, vol. 16, pp.641-647, 1994
    [10] J. Kennedy and R. C. Eberhert, “Particle Swarm Optimization”, in Proceeding of IEEE International Conference on Neural Networks, 1942-1948, 1995.
    [11] A. Ratnaweera, S. Halgamuge, H. Watson, “Self- organizing hierarchical particle swarm optimizer with time varying accelerating coefficients,” TEC, 8(3): 240 - 255, June 2004.
    [12] R. C. Eberhert and J. Kennedy. “A New Optimizer Using Particle Swarm Theory”, in Proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan., IEEE Service Center, Piscataway, NJ, 39-43,1995
    [13] A. Djouadi, O. Snorrason and F. D. Garber, “The Quality of Training-Sample Estimates of the Bhattacharyya Coefficient”, IEEE Transactions Pattern Analysis Machine Intelligence, Vol. 12, pp. 92-97, 1990.
    [14] T. Kailath, “The Divergence and Bhattacharyya Distance Measures in Signal Selection”, IEEE Transactions Communication Technology, Vol. COM-15, pp. 52-60, 1967.
    [15] Microsoft Corp., Kinect, http://www.xboxkinection.com
    [16] S. H. Ling, H. H. C. Iu, K. Y. Chan, H. K. Lam, B. C. W. Yeung, and F. H. Leung, “Hybrid particle swarm optimization with wavelet mutation and its industrial applications,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 3, pp. 743–763, Jun. 2008.
    [17] W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H. Chung, Y. Li, and Y.-h. Shi, “Particle swarm optimization with an aging leader and challengers,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 2, pp. 241–258, 2013.
    [18] J. A. Leese, C. S. Novak, V. R. Taylor , “The Determination of Cloud Motion Patterns from Geosynchronous Satellite Image Data,” Patter Recognition, Clustering, Statistic, Grammars, Learning, Vol.2, No.5, pp.272 – 292 , 1970.
    [19] S. Murali and R. Girisha, 2009, “Segmentation of Motion Objects from Surveillance Video Sequences using Temporal Differencing Combined with Multiple Correlation,” in Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 472-477.
    [20] A. Elgammal, R. Duraiswami, D. Harwood and L. S. Davis, “Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance,” in Proc. Of the IEEE, vol. 90, issue 7, pp. 1151-1163, 2002.
    [21] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, No. 10, pp. 1337-1342, 2003.
    [22] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Background and foreground modeling using nonparametric kernel density estimation for visual surveillance,” Proc. IEEE, Vol. 90, No. 7, pp. 1151-1163, 2002.
    [23] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 780-785, 1997.
    [24] C. Stauffer, and W. E. L. Grimson, “Adaptive background mixture models for real-time tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 246-252, 1999.
    [25] Genesys LogicInc. GL846 high speed USB2. 02-in-1 scanner controller with fast ADF 1.05, January 2008.
    [26] Jain A. K. Fundamentals, “digital image processing”. New York Prentice Hall, 1989.
    [27] L. Bischof and R. Adams, “Seeded Region Growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, June 1994.

    [28] http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_comparison.html
    [29] http://wiki.mbalib.com/zh-tw/卡方檢驗/
    [30] T. Kobayashi, K. Nakagawa, J. Imae and G. Zhai, “Real Time Object tracking on Video Image Sequence using Particle Swarm Optimization”, International Conference on control, Automation and systems, pp 1773-1778, Seoul, Korea, 2007.
    [31] X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu. “Sequentical Particle Swarm Optimization for Visual Tracking”. In IEEE Conference on Computer Vision and Pattern Reco.
    [32] Y. Zheng, Y. Meng. “Adaptive Object Tracking using Particle Swarm Optimization”. IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2007, pp.43-48.
    [33] Z.-H. Zhan, J. Zhang, Y. Li, and H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 39, no. 6, pp. 1362–1381, Dec. 2009.
    [34] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 832–847, Dec. 2011.
    [35] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of mulitimodal functions,” IEEE Trans Evol. Comput. 2006.
    [36] 顏妙純,「一個即時移動物偵測與追蹤的嵌入式系統」,國立中央大學,碩士論文,民國98年
    [37] 周建佑,「基於LK演算法及Kinect的動態目標追蹤系統之研究」,國立中央大學,碩士論文,民國101年
    [38] 簡隆至,「即時移動物體偵測及自動追蹤系統」,國立台灣科技大學,碩士論文,民國93年
    [39] 廖志儒,「人臉辨識在Android平台之實現」,國立中央大學,碩士論文,民國102年
    [40] 賴俊良,「移動目標物視覺偵測與追蹤研究」,國立成功大學,碩士論文,民國95年

    QR CODE
    :::