跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳嘉佑
Chia-You Chen
論文名稱: 混凝土既有應力之非破壞檢測技術開發
Development of a Non-destructive Technique for the Measurement of Existing Stress in Prestressed Concrete
指導教授: 王仲宇
Chung Yue Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 181
中文關鍵詞: 非破壞檢測混凝土殘餘應力超音波
外文關鍵詞: Ultrasonic, Nondestructive testing, Residual Stress, Concrete
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用非破壞檢測方法量測混凝土結構既有應力,首先針對殘餘應力理論作了回顧,並對單軸軸壓應力理論作了一個簡單分析,此一分析結果發現軸應力和波速之間存在一最高階為4次方之關係,為了解混凝土於不同軸壓應力下之力學與聲學性質的變化情形,一共製作了66個不同材料強度之試體進行試驗,每一試體在不同等級之軸壓力作用下,均使用先進之乾點式超音波檢測儀量測各種波傳角度下之穿透縱波、穿透橫波、表面縱波、表面橫波之波速。量測結果顯示穿透縱波量測方式,可較明顯地見到軸壓比和波速比之相關性。將所有實驗結果進行回歸分析,可以得到一條平均之迴歸公式。由實驗結果可以發現當應力比達0.5時,波速開始明顯下降,隨著應力比的遞增,約達0.8時,波速即快速衰減。這個發現剛好與AE量測之結果相互呼應。由音洩量測可以看出當應力比達0.5和0.8時,其混凝土內部因微裂縫之生成,而導致音洩事件數量遞增。本文應用最佳化之和聲搜尋法配合聲彈理論進行既有應力反算,並於文中展示了應用迴歸公式進行現地既有應力量測之流程。


    In this thesis, the nondestructive testing method to measure the existing stresses
    of concrete component is studied. Basic theories for the measurement of residual
    stresses were reviewed. A simple one-dimensional theory is derived which shows a
    fourth order power relationship between the un-axial stress and velocity of the
    material. Totally 66 concrete specimens of material strength ranged from 210 kg / cm2
    to 420 kg / cm2 were tested and measured their mechanical and acoustic properties.
    For each specimen, the longitudinal wave speeds and transverse wave speeds of
    through-transmission mode and surface mode in various directional angles with
    respect to the direction of compressive stress were measured by an advanced
    dry-contact type ultrasonic instrument at different compression stress level. From
    the experimental results, it is found that the through-transmission mode can provide
    better signals to distinguish the variation of wave speed ratio due to the change of
    stress ratio. A regression formula of the existing stress and wave speed is obtained
    from all the tested specimens. It is also found that the wave speed ratio starts
    decreasing at the stress ratio of 0.5 and decreases drastically when the stress ratio reaches 0.8. This observation is verified by the acoustic emission (AE) method.
    The AE events have obvious variation at the stress levels of
    σ / fc′ =0.5 and 0.8
    which are corresponding to the growth and extension of micro cracks inside the
    concrete specimen. The harmony search method was applied to back calculate the
    material properties and the existing stress of each specimen. A procedure of
    applying the regression formula to measure the existing stress of concrete component
    in field is also presented.

    摘要 I ABSTRACT II 誌 謝 IV 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 第二章 研究方法與規劃 8 2.1 單軸既有應力之分析理論 8 2.2 殘餘應力量測之聲彈理論 11 2.3 音洩監測 (ACOUSTIC EMISSION MONITOR) 15 2.6 延時係數 17 2.7 無應力狀態史密特鎚(SCHMIDT HAMMER)量測規劃 18 2.8 乾點式超音波量測規劃 20 第三章 無軸壓應力狀態試體之材料性質量測與分析 26 3.1 配比設計 26 3.2 史密特鎚量測成果 30 3.3 乾點式超音波量測儀器精確度驗證 35 3.4 超音波穿透式波速於無應力狀態之量測成果 37 3.5 超音波表面式波速於無應力狀態之量測成果 43 3.6 超音波波速與混凝土抗壓強度之探討 50 第四章 具軸壓應力狀態試體之材料特性量測分析 55 4.1 音洩事件量測 55 4.2 延時係數探討 58 4.3 穿透式波速與應力之關係 59 4.4 表面式波速與應力之關係 62 4.5 波速與量測角度之關係 64 4.6 振幅與應力比之關係 67 4.7 加卸載量測 72 第五章 單軸應力反算 75 5.1 配合單軸既有應力理論之應力反算 75 5.2 配合聲彈理論之應力反算 79 第六章 結論與建議 83 參考文獻 86 附錄A:穿透式縱波波速比與應力比關係圖 89 附錄B:穿透式橫波波速比與應力比關係圖 122 附錄C:各試體之應力應變資料表 154

    1. Wardhana, Kumalasari and Hadipriono, F.C., “Analysis of Recent Bridge Failures in the United States,” Journal of Performance of Constructed Facilities (ASCE), Volume 17, Issue 3, pp. 144-150 (2003).
    2. Highways Agency, Post-Tensioned Concrete Bridges, Great Britain, pp. 103-109 (1999).
    3. Le Diouron, Thomas, Bernard Basile, Jérôme Stubler, Stress Measurements in Concrete and Tensioned Steel Bars and Bolts, FIB Workshop (2002).
    4. Wang, Guodun and Wang, M.L., “The utilities of U-shape EM sensor in stress monitoring,” Structural Engineering and Mechanics, Vol. 17. No. 3-4 (2004).
    5. Pavlakovic, Brian, Mike Lowe, Peter Cawley, Guied Ultrasonic Waves for The Inspection of Post-Tensioned Bridges (1998).
    6. Roberts, A., “Progress in the application of photoelastic techniques to rock mechanics,” Proceeding Sixth Symposium on Rock Mechanics, University of Missouri at Rolla (1964).
    7. Smolarkiewicz, Pawel P. Carnot L. Nogueira, and Kaspar J. Willam, “Ultrasonic evaluation of damage in heterogeneous concrete materials,” European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS2000.
    8. Popovics, S., Rose, J. L., and Popovics, J. S., “The Behavior of Ultrasonic Pulses on Concrete,” Cement and Concrete Research, Vol. 20, pp. 259-270 (1990).
    9. Anderson, D.A. and Seals, R.K., “ Pulse Velocity as Predictor of 28- and 90-day Strength,” ACI Materials Journal, Vol.78, pp. 116-122 (1981).
    10. Ramazan Demirbog˘a, I˙brahim Tu¨rkmen, Mehmet B. Karakoc, “ Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete,” Cement and Concrete Research, Vol. 34, No. 12, pp. 2329-2336 (2004).
    11. Keating, J., Hannant, D.J., and Hibbert, A.P., “Correlation between Cube Strength, Ultrasonic Pulse Velocity, and Volume Change for Oil Well Cement Slurries,” Cement and Concrete Research, Vol. 19, No. 5, pp. 715-726 (1989).
    12. 陳文雄,結構混凝土力學行為與設計,新文京開發出版股份有限公司,台北,第2-23~2-24頁 (2001)。
    13. Christian Meyer,鋼筋混凝土結構設計,滄海出版社,台中 (1998)。
    14. 黃茂坤,工業用超音波檢測實務彙編,中船公司高雄總廠訓練中心(1996)。
    15. American Concrete Institute,ACI211.1法,普通混凝土配比設計,(1996)。
    16. 裴廣智、林東威、干裕成、鄭家齊、江支弘、徐鴻發, “乾點式低頻超音波在混凝土波速檢測之應用及實例”,第12屆非破壞檢測技術研討會,民國93年4月30日-5月1日,日月潭。
    17. J. Keating, D.J. Hannant and A.P. Hibbert “Comparison of Shear Modulus and Pulse Velocity Techniques to Measure The Build-up of Structure in Fresh Cement Pastes Used in Oil Well Cementing,” Cement and Concrete Research, Vol. 19, pp. 554-566 (1990).
    18. Popovics, S. “Analysis of Concrete Strength versus Ultrasonic Pulse Velocity Relationship,” Material Evaluation, Vol. 59, No. 2, pp. 123-130 (2001).
    19. Noyan, I.C., and Cohen, J.B., Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag New York, Germany, pp. 4-7 (1987).
    20. Man, C.S., and Lu, W.Y., “Towards an acoustoelastic theory for measurement of residual stress,” Journal of Elasticity, Volume 17, Number 2, pp. 159-182, January (1987).
    21. Degtyar, A.D., and Rokhlin, S.I., “Absolute stress determination in orthotropic materials from angular dependences of ultrasonic velocities,” J. Appl. Phys., Vol. 78, No. 3, pp. 1547-1556 (1995).
    22. Degtyar, A.D., Lavrentyev, A.I., and Rokhlin, S.I., “New method for determination of applied and residual stresses in anisotropic materials from ultrasonic velocity measurement,” Materials Evaluation, Vol. 55, pp. 1162-1168 (1997).
    23. Robert, M.J., Mechanics of Composite Materials, Dallas, Texas, pp. 40-41 (1975).
    24. Watanabe, Ken, Niwa, Junichiro, Iwanami, Mitsuyasu, and Yokota, Hiroshi, “Localized failure of concrete in compression identified by AE method,” Construction and Building Materials, Vol. 18, pp. 189-196 (2004).
    25. AКУСТИЧЕСКИЕ КОНТРОЛЬНЫЕ СИСТЕМЫ, 1401 Ultrasonic Tester User’s Manual, Moscow (2004).
    26. Geem, Z. W., Kim, J. H., and Loganathan, G. V., “A new heuristic optimization algorithm: harmony search,” Simulation, Vol. 76, No. 2, pp. 60-68 (2001).
    27. Nogueira, C.L., Willam, K.J., “Ultrasonic testing of damage in concrete under uniaxial compression,” ACI Materials Journal, 98 (3), pp. 265-275 (2001).

    QR CODE
    :::