跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張雅茹
Ya-Ju Chang
論文名稱: 彎曲波導耦合表面電漿子研究
Surface Plasmon Generation on Curved Waveguides
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 彎曲波導表面電漿感測器
外文關鍵詞: curved waveguide, Surface Plasmon, sensor
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們提出利用彎曲波導耦合表面電漿於金屬微米半環上,透
    過改變微米金屬環與彎曲波導的相對位置,獲得能夠在金屬微米環上增強
    表面電漿共振的結構,並使用使用限時域差分法 (Finite-Difference Time-
    Domain Method, FDTD)來模擬實際電磁波於波導內傳播及耦合到金屬環上
    產生表面電漿共振模態的行為。
    本論文藉由改變波導使用的材料,將傳統稜鏡耦合使用的折射率為1.5
    的玻璃提升到具有較高折射率為1.7 的波導,而此結構可利用鍺(Ge)氧化物
    來實現,這樣的改進使光場能更好的局限於波導內,使更多能量能夠耦合到
    金屬環上並增強表面電漿耦合,使該結構具對環境變化具有較高靈敏度,使
    用光偵測器結合本元件可將靈敏度提高至10-10RIU。


    In this thesis, we launched a light in TM mode into a curved waveguide to generate surface plasmon polariton on a metallic micro-ring made by gold in Otto configuration. By changing the location of metallic micro-ring to curved waveguide, we can enhance the strength of the surface plasmon resonance. The structure is analyzed by the Finite-Difference Time-Domain Method. The refractive index of the curved waveguide is changed from 1.5 to 1.7. The confinement ability of the waveguide is improved. The energy coupled on metallic micro-ring is used to excite the surface plasmon polariton. The device shows a better sensitivity 10-10RIU.

    目錄 中文摘要 ................................ ................................ ................................ ................ i Abstract ................................ ................................ ................................ ................. ii 目錄 ................................ ................................ ................................ ...................... iii 圖目錄 ................................ ................................ ................................ .................. vi 表格目錄 ................................ ................................ ................................ ............... x 第一章 緒論 ................................ ................................ ................................ ......... 1 1-1 前言 ................................ ................................ ................................ ......... 1 1-2 表面電漿偏極子激發條件與耦合結構 ................................ ................ 3 1-2-1 稜鏡 耦合 (prism coupler) ................................ ................................ .... 4 Otto架構 (Otto configuration)[6] ................................ ............................ 4 Kretschmann架構 (Kretschmann configuration)[7] ............................... 6 1-3 積體化表面電漿子共振腔感測器發展回顧 ................................ ........ 7 1-4 研究架構 ................................ ................................ ............................... 11 1-5 彎曲波導耦合表面電漿................................ ................................ ... 12 1-6 研究動機 ................................ ................................ ............................... 14 1-7 論文架構 ................................ ................................ ............................... 14 1-8 結論 ................................ ................................ ................................ ....... 15 第二章 基本理論與模擬方法 ................................ ................................ ......... 16 iv 2-2 表面電漿介紹與理論 ................................ ................................ ........... 16 2-2-1 表面電漿簡介 ................................ ................................ ................... 16 2-2-2 金屬的光學反應................................ ................................ ............... 17 Drude model ................................ ................................ .......................... 19 2-2-3 金屬介面與電物質的表漿模態 ................................ ........... 23 TM極化電磁 波 ................................ ................................ .................... 24 輻射性表面電漿模態 ................................ ................................ ........... 27 非輻射性表面電漿模態 ................................ ................................ ....... 28 2-3 有限時域差分法 (Finite-difference time-domain method, FDTD) ... 30 FDTD數值模擬穩定性 ................................ ................................ ........ 35 2-4 保角轉換理論 (The conformal transformation)[37,38] ........................ 36 2-5 等效折射率分析法 (Effective index approximation) ........................... 44 2-6 結論 ................................ ................................ ................................ ..... 47 第三章 彎曲波導之設計與優化 ................................ ................................ ..... 48 3-1-1 以稜鏡架構產生表面電漿 ................................ ............................... 48 3-1-2 利用保角轉換及 Helmholtz equation決定波導尺寸 ..................... 54 3-2-1 彎曲波導寬度之優化 ................................ ................................ ....... 59 3-2-2 確認彎曲波導寬度................................ ................................ ........... 62 3-2 彎曲波導外圍光場損耗之處理與結構優化 ................................ ...... 64 3-3 結論 ................................ ................................ ................................ ....... 66 v 第四章 彎曲波導耦合表面電漿結構之設計與優化................................ ..... 67 4-1 偵測器 (monitor)設置 ................................ ................................ ........... 67 4-2 環境折射率改變對金屬吸收光能量的影響 ................................ ...... 70 4-3 波導折射率改變對輸出光強度的影響 ................................ .............. 74 4-3-1 波導材料為 1.5 ................................ ................................ ................. 75 4-4 結構對環境折射率改變之靈敏度測試 ................................ .............. 78 4-5 結論 ................................ ................................ ................................ ....... 81 第五章 結論與未來展望 ................................ ................................ ................... 83 5-1 論文總結 ................................ ................................ ............................... 83 5-2 未來工作 ................................ ................................ ............................... 85 參考文獻 ................................ ................................ ................................ ............. 86

    參考文獻
    [1] 吳民耀、劉威志, "表面電漿子理論與模擬," 物理雙月刊, 廿八卷二期, 489 (2006).
    [2] B. Liedberg, C. Nylander, I. Lundstrom, "Surface Plasmon resonance for gas detection and biosensing," Sensors and Actuators 4, 299 (1982).
    [3] I. W. Chung, R. Bernhardt, J. C. Pyun, "Sequential analysis of multiple analytes using surface plasmon resonance biosensor," J. Immunol. Methods 311, 178 (2006).
    [4] 易政男 , "藉由奈米電漿子偵測信號強化之表面共振與拉曼散色生物感測器 ," 國立中央大學光電科技研究所 國立中央大學光電科技研究所 , 博士論文 (2005).
    [5] 邱國斌、蔡定平, "金屬表面電漿簡介," 物理雙月刊, 28 , 472頁 (2006).
    [6] A. Otto, Prof. Rollwagen, "Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection," Zeitschrift ffir Physik 216, 398 (1968).
    [7] E. Kretschmann, H. Raether, "Radiative Decay of Non Radiative Surface Plasmons Excited by Light," Zeitschrift für Naturforschung A 23, 213 (1968).
    [8] P. V. Lambeck, "Integrated opto-chemical sensors," Sensors and Actuators B 8, 103 (1992).
    [9] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467 (2002).
    [10] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Active semiconductor microdisk devices," IEEE J. Lightwave Technol. 20, 105 (2002).
    [11] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Vertically coupled InP microdisk switching devices with electroabsorptive active regions," IEEE Photon. Technol. Lett. 14, 1115 (2002).
    [12] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators," IEEE J. Lightwave Technol. 20, 1485 (2002).
    [13] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "Microdisk tunable resonant filters and switches," IEEE Photon. Technol. Lett. 4, 828 (2002).
    [14] K. Djordjev, S. J. Choi, S. J. Choi, P. D. Dapkus, "High-Q vertically coupled InP microdisk resonators," IEEE Photon. Technol. Lett. 14, 331 (2002).
    [15] S. Xiao, L. Liu, M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932 (2006).
    [16] J. W. Oh, J. Choi, N. Kim, "Tunable color filter with surface plasmon resonance using organic photorefractive composite," Applied Optics. 48, 3160 (2009).
    [17] Y. Shen, G. P. Wang, "Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides," Opt. Express 17, 12807 (2009).
    [18] A. V. Krasavin, A. V. Zayats, "Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides," Applied Phys. Lett. 97, 041107 (2010).
    [19] S. Iyer, S. Popov, A. T. Friberg, "Linear birefringence in split-ring resonators," Opt. Lett. 37, 2043 (2012).
    [20] X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, A. Q. Liu," A nano-opto-mechanical pressure sensor via ring resonstor," Opt. Express 20, 8535 (2012).
    [21] J. Lee, J. Song, G. Y. Sung, J. H. Shin, "Plasmonic Waveguide Ring Resonators with 4 nm Air Gap and λ0^2/15000 Mode-Area Fabricated Using Photolithography," Nano Lett. 14, 5533 (2014).
    [22] E. M. Larsson, J. Alegret, M. Kall, D. S. Sutherland, "Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors," Nano Lett. 7, 1256 (2007).
    [23] Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, Q. Xiong, "Multiple Magnetic Mode-Based Fano Resonance in Split-Ring Resonator Disk Nanocavities," ACS Nano 7, 11071 (2013).
    [24] J. C. Abanulo, R. D. Harris, P. N. Bartlett, J. S. Wilkinson, "Waveguide surface plasmon resonance sensor forelectrochemically controlled surface reactions," Applied Optcs. 40, 6242 (2001).
    [25] C. S. Cheng, Y. Q. Chen, C. J. Lu, "Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer," Talanta. 73, 358 (2007).
    [26] Y. C. Li, Y. F. Chang, L. C. Su, C. Chou, "Differential-Phase Surface Plasmon Resonance Biosensor," Analytical Chemistry 80, 5590 (2008).
    [27] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine 4, 396 (1902).
    [28] D. Pines, D. Bohm, "A collective description of electron interations: Coulomb interactions in a degenerate electron gas," Phys.Rev. 92, 609 (1953).
    [29] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phy. Rev.106, 874, (1957).
    [30] N. W. Ashcroft, N. D. Mermin, Solid State Physics., Harcourt. (1976).
    [31] H. Raether, "Surface Plasmons on Smooth and Rough Surfaces and on Gratings," Springer Verlag., Berlin (1998).
    [32] A.V. Krasavin, A. V. Zayats, "Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides," Appl. Phys.Lett., 97, 041107 (2010).
    [33] D. Ahmadian, C. Ghobadi, J. Nourinia, "Ultra-compact two-dimensional plasmonic nano-ring antenna array for sensing applications," Opt Quant Electron 46, 1097 (2014).
    [34] D. Ahmadian, C. Ghobadi, J. Nourinia, "Tunable Plasmonic Sensor With Metal–Liquid Crystal–Metal Structure," IEEE Photonics Journal 7, 4800310 (2015).
    [35] 李長綱 , "電磁學與電磁波的理論及應用(下)," 10-8頁 (2012).
    [36] K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations," IEEE Tran. on Ant. and Pro, 14, (1966).
    [37] R. Schinzinger, P. A. A. Laura, Conformal Mapping: Method and Application, First Edition, Dover.
    [38] 伍茂仁 , "Equivalent Waveguide Theory Based on Conformal Mapping 87 Method : Design and Analysis of Ideal Optical Waveguides," 國立中央大學 , 光電科學研究所 光電科學研究所 光電科學研究所 光電科學研究所 光電科學研究所 , (2001).
    [39] O. Alexandrov, "self-made with MATLAB," (2008).
    [40] K. Okamoto, "Fundamentals of Optical Waveguide," First edition, Academic.
    [41] H. Zhou, C. Li, X. Chen, "Analysis of the positive or negative lateral shift of the reflected beam in Otto configuration under grazing incidence," Chinese Optics Letters. 6, 446 (2008).
    [42] X. Zhou, X. Ling, "Enhanced Photonic Spin Hall Effect Due to Surface Plasmon Resonance," IEEE Photonics Journal. 8, 1943 (2016).
    [43] S. Roh, T. Chung, B. Lee, "Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors," Sensors, 11(2), 1565 (2011).
    [44] D. P. Cai, C. C. Chen, C. C. Lee, T. D. Wang, "Study of Coupling Length of Concentrically Curved Waveguides," IEEE Photon. J., 4, 80 (2012).
    [45] https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=3328#6035
    [46] https://www.researchgate.net/post/What_is_a_refractive_index_unit
    [47] J. M. Bingham, J. N. Anker, L. E. Kreno, R. P. V. Duyne, "Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy," J. AM. CHEM. SOC. 132, 17358 (2010). [48] T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, H. Ye, "The sensing characteristics of plasmonic waveguide with a ring resonator," Opt. Express 22, 7669 (2014). [49] X. Jiang, J. Ye, J. Zou, M. Li, J. J. He, "Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode," Opt. Lett. 38, 1349 (2013).
    [50] L. Jin, M. Li, J. J. He, "Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect," Optics Commun. 284, 156 (2011).

    QR CODE
    :::