| 研究生: |
曾琬芸 Wan-Yun Tseng |
|---|---|
| 論文名稱: |
動態人口分布最佳化控制之研究-雙層規劃模型之應用 |
| 指導教授: |
陳惠國
Huey-Kuo Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 動態人口遷徙均衡 、變分不等式 、敏感度分析 、雙層規劃模型 |
| 外文關鍵詞: | dynamic human migration equilibrium, variational inequality, sensitivity analysis, bilevel programming model |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過時間向度上人口遷徙流量守恆的關係,整合靜態人口遷徙均衡模型(Nagurney, 1993)與動態用路人均衡路徑選擇模型(Chen, 1999),構建動態人口遷徙均衡模型;並將動態人口分布問題構建為雙層規劃模型,上層為政府之社會福利政策最佳化系統,以追求系統遷徙總成本最小為目標;下層限制式則包含動態人口遷徙均衡限制式,對於任何遷徙者而言,必以遷徙總成本最小的節點為其遷徙目的地。
此外,根據變分不等式敏感度分析手法(Tobin and Friesz, 1988)進行路網測試,證實利用變分不等式敏感度分析可以獲得變分不等式模型決策變數對於微擾變數之一階偏微,有效預估參數微擾後路段上人口遷徙量的變動情況。透過變分不等式敏感度分析資訊手法,導入社會福利政策,來改善地區資源分布不均的潛在問題,達成人口重分配,區域均衡發展之目的。
Besides, following variational sensitivity analysis manners (Tobin and Friesz, 1988) proceed the numerical examples, to verify that variational inequality model decision variable to perturb variable’s first order differential can estimate the change efficiently after parameter perturbed by the way. In view of sensitivity analysis information and guiding in socialware policies of the government, to improve the potential problems of resources disproportion to get population re-distribution and regional development be balanced.
1. 陳惠國,2000,動態旅運選擇模型的回顧與前瞻,第四屆運輸網路研討會,台南。
2. 周鄭義,1999,動態號制時制最佳化之研究-雙層規劃模型之應用,國立中央大學土木工程學系碩士論文,中壢。
3. 王中允,1999,路段容量限制動態用路人旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
3. 王中允,1999,路段容量限制動態用路人旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
5. 張美香,1998,動態旅運選擇模型之課題研究,國立中央大學土木工程學系博士論文,中壢。
6. 張育銘,1998,台灣地區人口遷徙與地區發展之研究,國立交通大學交通運輸研究所,新竹。
7. 薛哲夫,1996,明確型動態旅運選擇模型之研究,國立中央大學土木工程學系碩士論文,中壢。
8. 陳昌盛,1996,以機會模式探討台灣地區人口之遷徙,逢甲大學建築暨都市計劃研究所碩士論文,台中。
9. 國立成功大學都市計劃研究所,1996,國土綜合規劃政策系統動態模型之測試,行政院經建會都市及住宅發展處。
10. 姜渝生,1995,國土綜合規劃政策分析系統之研究,行政院經濟建設委員會都市及住宅發展處。
11. 姜渝生,1994,未來國土空間結構之研究,行政院經濟建設委員會都市及住宅發展處。
12. 許道欣,1992,人口遷徙決策及其影響因素-台灣地區人口內部遷移之研究,國立中興大學都市計劃研究所,台北。
13. 辛晚教,1981,都市及區域計劃,中國地政研究所。
14. Abdulaal, M. and LeBlanc, L. J., 1979, “Continuous Equilibrium Network Design Models,” Transportation Research, 13B(1), 19-32.
15. Chen, H. K., 1999, Dynamic Travel Choice Models: A Variational Inequality Approach, Springer-Verlag, Berlin.
16. Chen, Y., 1993, Bilevel Programming Problems: Analysis, Algorithms and Applications, Ph.D of Departement d’informatique et de recherche operationnelle de Universite de Montreal.
16. Chen, Y., 1993, Bilevel Programming Problems: Analysis, Algorithms and Applications, Ph.D of Departement d’informatique et de recherche operationnelle de Universite de Montreal.
18. Dorigo, G. and Tobler, W., 1983, “Push-Pull Migration Laws,” Annals of the Association of American Geographers, 73(1), 1-17.
19. Duann, L. S., 1986, A Dynamic Simulation Model for Urban Residential Location, Travel Mode Choice, and Residential Land Development, College of Management Science N.C.K.U., 3, Tainan.
20. Fiacco, A. V., 1983, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York.
21. Fiacco, A. V. and McCormick, G. P., 1968, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley & Sons, New York.
22. Fisk, C. S., 1984, “Game Theory and Transportation Systems Modeling,” Transportation Research, 18B, 301-313.
23. Gollanway, L. E. and Vedder, R. K., 1971, “Mobility of Native Americans,” Journal of Economics History, 31, 613-649.
24. Goodspeed, T. J., 1998, “On the Importance of Public Choice in Migration Models,” Economics Letters, 59, 373-379.
25. Greenwood, M. J., 1985, “Human Migration: Theory, Models, and Empirical Studies,” Journal of Regional Science, 25, 521-544.
25. Greenwood, M. J., 1985, “Human Migration: Theory, Models, and Empirical Studies,” Journal of Regional Science, 25, 521-544.
27. Lee, E. S., 1966, “A Theory of Migration,” Demography, 3, 47-58.
28. Lewis, G.J., 1982, Human migration, Guildford, London, Oxford, Worcester.
28. Lewis, G.J., 1982, Human migration, Guildford, London, Oxford, Worcester.
30. Nagurney, A., 1993, Network Economics: A Variational Inequality Approach, Kluwer Academic Publishers, Boston.
31. Nagurney, A., Pan, J. and Zhao, L., 1992, “Human Migration Networks,” European Journal of Operational Research 59, 262-274.
32. Nagurney, A., 1990, “A Network Model of Migration Equilibrium with Movement Costs,” Mathematical Computer Modelling, 13, 79-88.
32. Nagurney, A., 1990, “A Network Model of Migration Equilibrium with Movement Costs,” Mathematical Computer Modelling, 13, 79-88.
34. Rogers, A., 1984, Migration, Urbanization, and Spatial Population Dynamics, Boulder, Colo.: Westview Press.
35. Rudin, W., 1953, Principles of Mathematical Analysis, McGraw-Hill, New York.
36. Sheffi, Y., 1984, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice- Hall, Inc., Englewood Cliffs.
37. Stewart, C. T., 1960, “Migration as a Function of Population and Distance,” American Sociological Review, 25, 347-356.
38. Stolnitz, G. J., 1978, “International Migration Policies: Some Demographic and Economic Contexts,” Human Migration, McNeill and Adams, 307-316.
39. Tobin, R. L. and Friesz, T. L., 1988, “Sensitivity Analysis for Equilibrium Network Flow,” Transportation Science, 22(4), 272-250.
40. Tobler, W. R., 1981, “A Model of Geographical Movement,” Geographical Analysis, 13(1), 1-20.
41. Waldorf, B., 1996, “The Internal Dynamic of International Migration Systems,” Environment and Planning, 28A, 631-650.