跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳乃鳳
Nai-Feng Chen
論文名稱: 左側後頂葉腦區於情節記憶提取之功能性角色:電生理、腦磁波與經顱直流電刺激之研究
The functional roles of the left posterior parietal cortex in episodic retrieval: EEG, MEG, and tDCS studies
指導教授: 鄭仕坤
Shih-Kuen Cheng
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 117
中文關鍵詞: 左側後頂葉腦區情節記憶經顱直流電刺激事件相關腦電位腦磁波
外文關鍵詞: left posterior parietal cortex, episodic memory, tDCS, ERP, MEG
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來腦造影研究持續發現左側後頂葉腦區與情節記憶提取之間存在關聯性,並指出左側後頂葉內的子區域對於記憶提取歷程有不同功能性的貢獻。然而,頂葉受損的病人其來源記憶表現並無明顯缺失,神經心理學的研究並不支持情節記憶提取需要左側後頂葉的參與假設。本研究將以腦電波與非侵入性經顱直流電刺激檢驗左側後頂葉是否涉及情節記憶提取的功能,此外,亦將使用腦磁波來源定位技術進一步探究左側後頂葉內不同子區域於記憶提取的功能性表現。實驗一探討左側後頂葉與情節記憶提取間的因果關係。結果顯示,陰極電刺激削弱情節記憶表現,此結果提供左側後頂葉與情節記憶提取間存在因果關係的支持性證據。實驗二延續實驗一的發現,藉由紀錄事件相關腦電位,進一步檢驗左側後頂葉是否涉及重拾記憶(recollection)的運作歷程。結果顯示,相較於接受假性電刺激,陰極電刺激會降低左側頂葉新舊腦電位效果,但中額葉新舊電位效果並未受影響。此電生理結果提供神經元活動方面的證據,亦支持左側後頂葉與重拾記憶歷程間存在因果關聯性之推論。實驗三以腦磁波儀紀錄執行記得/知道記憶判斷(Remember/Know judgment)時相關的腦部活動。結果顯示,記憶熟悉感(familiarity)的相關腦部活動早先發生於背側頂葉;另一方面,重拾記憶的相關腦部活動晚些發生於腹側頂葉。實驗結果提供了記憶熟悉感歷程與重拾記憶歷程間時序與解剖位置上皆互相獨立的證據。總結以上實驗發現,本研究顯示,左側後頂葉與情節記憶提取間存在因果關聯性,且頂葉內不同區域涉及情節記憶提取的不同認知運作歷程。


    Recent functional neuroimaging studies consistently revealed the association between the left posterior parietal lobe (LPPC) activities and episodic retrieval, and reflected distinct subregions of the LPPC contributes differently to retrieval processing. In contradiction to the abundant neuroimaging evidence, patients with parietal lesions exhibited intact memory performance when tested with the source memory task. Given these inconsistent findings, the role played by the LPPC in memory retrieval remains unclear. Therefore, this thesis aimed to address the issue of whether the LPPC is necessarily involved in episodic retrieval, and investigate the functional significances of the subregions in the LPPC. The first two experiments were carried out to examine the causal role of the LPPC in episodic retrieval. The third experiment was carried out to investigate the functional heterogeneity in LPPC. In Experiment Ι, transcranial direct current stimulation (tDCS) was employed to interfere with the neural excitability of the LPPC during memory retrieval. Participants were randomly assigned to the anodal or the cathodal stimulation group and engaged in three source memory tests on three separate days. The results showed that source memory accuracy decreased significantly when participants in the cathodal group received stimulation over the LPPC scalp region in comparison to the sham stimulation and the control stimulation condition, supporting the claim that the LPPC is causally related to episodic memory retrieval. Following the casual evidence observed from the first experiment, Experiment Π was designed to further validate whether the LPPC is involved in the recollection process, in which event-related potentials (ERPs) were recorded during the retrieval right after direct current stimulation applied. The results demonstrated that cathodal stimulation decreased the left-parietal old/new ERP effect in comparison to the sham condition. In contrast, the mid-frontal old/new ERP effect remained unaffected across three stimulation conditions. These findings suggested that LPPC supports the recollection process in episodic retrieval. In Experiment Ш, to examine the underlying parietal neural substrates of episodic memory, participants performed modified confidence Remember/know judgments in the Magnetoencephalography (MEG) scanner. The MEG source estimation data revealed distinct temporal and spatial profiles of recollection- and familiarity-related processes. Specifically, recollection-related activities were found in the left ventral parietal regions in the later time window, whereas familiarity-related activities were observed in the left dorsal lateral parietal regions in the early time window. These results supported the hypothesis that recollection and familiarity are functionally distinct mechanisms and indicate the heterogeneous functions of LPPC subserve memory retrieval. In conclusion, the experiments in this thesis provided supportive evidence that the LPPC is indeed causally involved in episodic retrieval and reflected different memory functional roles of the subregions within the LPPC.

    摘要 i Abstract iii 致謝 v Content table vi List of Tables vii List of Figures viii Chapter 1 Introduction 1 1-1 Recognition memory 2 1-2 Episodic memory 7 1-3 The left posterior parietal lobe and episodic memory retrieval 10 1-4 Transcranial Stimulation studies of episodic memory retrieval 18 1-5 Aims of the research 19 1-6 Overviews of the research 22 Chapter 2 Experiment Ⅰ - Source memory performance is modulated by transcranial direct current stimulation over the left posterior parietal cortex 25 2-1 Introduction 25 2-2 Materials and methods 28 2-3 Results 33 2-4 Discussion 38 Chapter 3 Experiment Ⅱ – Transcranial direct current stimulation over the left posterior parietal cortex diminishes recollection-related ERP old/new effect 45 3-1 Introduction 45 3-2 Materials and methods 48 3-3 Results 55 3-4 Discussion 64 Chapter 4 ExperimentⅢ – Dissociable spatiotemporal neural correlates of recollection and familiarity in the left posterior parietal cortex: a MEG study 69 4-1 Introduction 69 4-2 Materials and methods 71 4-3 Results 76 4-4 Discussion 83 Chapter 5 Discussion 89

    Adlam, A. L. R., Malloy, M., Mishkin, M., &Vargha-Khadem, F. (2009). Dissociation between recognition and recall in developmental amnesia. Neuropsychologia, 47(11), 2207–2210. https://doi.org/10.1016/j.neuropsychologia.2009.01.038
    Al-Subari, K., Al-Baddai, S., Tomé, A. M., Volberg, G., Hammwöhner, R., &Lang, E. W. (2015). Ensemble empirical mode decomposition analysis of EEG data collected during a contour integration task. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0119489
    Ally, B. A., Simons, J. S., McKeever, J. D., Peers, P.V, &Budson, A. E. (2008). Parietal contributions to recollection: electrophysiological evidence from aging and patients with parietal lesions. Neuropsychologia, 46(7), 1800–1812. https://doi.org/10.1016/j.neuropsychologia.2008.02.026
    Antal, A., Keeser, D., Priori, A., Padberg, F., &Nitsche, M. A. (2015). Conceptual and procedural shortcomings of the systematic review “evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review” by horvath and co-workers. Brain Stimulation, Vol. 8, pp. 846–849. https://doi.org/10.1016/j.brs.2015.05.010
    Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., …Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28(9), 1419–1432. https://doi.org/10.1162/jocn_a_00979
    Baddeley, A. (2000, November 1). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423. https://doi.org/10.1016/S1364-6613(00)01538-2
    Baddeley, A., Vargha-khadem, F., &Mishkin, M. (2001). Preserved recognition in a case of developmental amnesia: Implications for the acquisition of semantic memory? Journal of Cognitive Neuroscience, 13(3), 357–369. https://doi.org/10.1162/08989290151137403
    Ben-Zvi, S., Soroker, N., &Levy, D. A. (2015). Parietal lesion effects on cued recall following pair associate learning. Neuropsychologia, 73, 176–194. https://doi.org/10.1016/j.neuropsychologia.2015.05.009
    Berryhill, M. E., Drowos, D. B., &Olson, I. R. (2009). Bilateral parietal cortex damage does not impair associative memory for paired stimuli. Cognitive Neuropsychology, 26(7), 606–619. https://doi.org/10.1080/02643290903534150.Bilateral
    Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., &Olson, I. R. (2007). Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(52), 14415–14423. https://doi.org/10.1523/JNEUROSCI.4163-07.2007
    Berryhill, M. E., Wencil, E. B., Branch Coslett, H., &Olson, I. R. (2010). A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neuroscience Letters, 479(3), 312–316. https://doi.org/10.1016/j.neulet.2010.05.087
    Bridson, N. C., Muthukumaraswamy, S. D., Singh, K. D., &Wilding, E. L. (2009). Magnetoencephalographic correlates of processes supporting long-term memory judgments. Brain Research, 1283, 73–83. https://doi.org/10.1016/j.brainres.2009.05.093
    Brown, M. W., &Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews Neuroscience, 2(1), 51–61. https://doi.org/10.1038/35049064
    Buchsbaum, B. R., &D’Esposito, M. (2008). The search for the phonological store: From loop to convolution. Journal of Cognitive Neuroscience, 20, 762–778. https://doi.org/10.1162/jocn.2008.20501
    Burianová, H., Ciaramelli, E., Grady, C. L., &Moscovitch, M. (2012). Top-down and bottom-up attention-to-memory: mapping functional connectivity in two distinct networks that underlie cued and uncued recognition memory. NeuroImage, 63(3), 1343–1352. https://doi.org/10.1016/j.neuroimage.2012.07.057
    Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia, 46(7), 1813–1827. https://doi.org/10.1016/j.neuropsychologia.2008.03.019
    Cabeza, R., Ciaramelli, E., &Moscovitch, M. (2012). Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends in Cognitive Sciences, 16(6), 338–352. https://doi.org/10.1016/j.tics.2012.04.008
    Cabeza, R., Ciaramelli, E., Olson, I. R., &Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Reviews. Neuroscience, 9(8), 613–625. https://doi.org/10.1038/nrn2459
    Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., …Moscovitch, M. (2011). Overlapping parietal activity in memory and perception: evidence for the attention to memory model. Journal of Cognitive Neuroscience, 23(11), 3209–3217. https://doi.org/10.1162/jocn_a_00065
    Cansino, S., Maquet, P., Dolan, R. J., &Rugg, M. D. (2002). Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex, 12(10), 1048–1056. https://doi.org/10.1093/cercor/12.10.1048
    Chang, C. F., Liang, W. K., Lai, C. L., Hung, D. L., &Juan, C. H. (2016). Theta oscillation reveals the temporal involvement of different attentional networks in contingent reorienting. Frontiers in Human Neuroscience, 10, 1–11. https://doi.org/10.3389/fnhum.2016.00264
    Chen, N.-F., Juan, C.-H., Muggleton, N. G., &Cheng, S.-K. (2014). Recognition memory performance is modulated by transcranial direct current stimulation over the left posterior parietal cortex. Journal of Neuroscience and Neuroengineering, 3(2). https://doi.org/10.1166/jnsne.2014.1100
    Ciaramelli, E., Grady, C. L., &Moscovitch, M. (2008). Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 1828–1851. https://doi.org/10.1016/j.neuropsychologia.2008.03.022
    Ciaramelli, E., Grady, C., Levine, B., Ween, J., &Moscovitch, M. (2010). Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: neuroimagingand and neuropsychological evidence. The Journal of Neuroscience, 30(14), 4943–4956. https://doi.org/10.1523/JNEUROSCI.1209-09.2010
    Corbetta, M., &Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755
    Cruse, D., &Wilding, E. L. (2009). Prefrontal cortex contributions to episodic retrieval monitoring and evaluation. Neuropsychologia, 47(13), 2779–2789. https://doi.org/10.1016/j.neuropsychologia.2009.06.003
    Curran, T. (2000). Brain potentials of recollection and familiarity. Memory and Cognition, 28(6), 923–938. https://doi.org/10.3758/BF03209340
    Curran, Tim, Tanaka, J. W., &Weiskopf, D. M. (2002). An electrophysiological comparison of visual categorization and recognition memory. Cognitive, Affective and Behavioral Neuroscience, 2(1), 1–18. https://doi.org/10.3758/CABN.2.1.1
    D’Argembeau, A. (2013). On the role of the ventromedial prefrontal cortex in self-processing: The valuation hypothesis. Frontiers in Human Neuroscience, 7:372. https://doi.org/10.3389/fnhum.2013.00372
    Davidson, P. S. R., Anaki, D., Ciaramelli, E., Cohn, M., Kim, A. S. N., Murphy, K. J., …Levine, B. (2008a). Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia, 46(7), 1743–1755. https://doi.org/10.1016/j.neuropsychologia.2008.01.011
    Davidson, P. S. R., Anaki, D., Ciaramelli, E., Cohn, M., Kim, A. S. N., Murphy, K. J., …Levine, B. (2008b). Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia, 46(7), 1743–1755. https://doi.org/10.1016/j.neuropsychologia.2008.01.011
    DeLuca, G. C., Yates, R. L., Beale, H., &Morrow, S. A. (2015). Cognitive Impairment in Multiple Sclerosis: Clinical, Radiologic and Pathologic Insights. Brain Pathology, 25(1), 79–98. https://doi.org/10.1111/bpa.12220
    Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., …Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
    Dobbins, I. G., Foley, H., Schacter, D. L., &Wagner, A. D. (2002). Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron, 35(5), 989–996. https://doi.org/10.1016/S0896-6273(02)00858-9
    Doppelmayr, M., Klimesch, W., Schwaiger, J., Auinger, P., &Winkler, T. (1998). Theta synchronization in the human EEG and episodic retrieval. Neuroscience Letters, 257(1), 41–44.
    Doppelmayr, M., Klimesch, W., Schwaiger, J., Stadler, W., &Röhm, D. (2000). The time locked theta response reflects interindividual differences in human memory performance. Neuroscience Letters, 278(3), 141–144.
    Downes, J. J., Mayes, A. R., MacDonald, C., &Hunkin, N. M. (2002). Temporal order memory in patients with Korsakoff’s syndrome and medial temporal amnesia. Neuropsychologia, 40(7), 853–861. https://doi.org/10.1016/S0028-3932(01)00172-5
    Dronkers, N. F., Wilkins, D. P., VanValin, R. D., Redfern, B. B., &Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92, 145–177. https://doi.org/10.1016/j.cognition.2003.11.002
    Düzel, E., Habib, R., Schott, B., Schoenfeld, A., Lobaugh, N., McIntosh, A. R., …Heinze, H. J. (2003). A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory. NeuroImage, 18(2), 185–197. https://doi.org/10.1016/S1053-8119(02)00031-9
    Düzel, Emrah, Neufang, M., &Heinze, H.-J. (2005). The oscillatory dynamics of recognition memory and its relationship to event-related responses. Cerebral Cortex (1991), 15(12), 1992–2002. https://doi.org/10.1093/cercor/bhi074
    Düzel, E., Yonelinas, A. P., Mangun, G. R., Heinze, H. J., & Tulving, E. (1997). Event-related brain potential correlates of two states of conscious awareness in memory. Proceedings of the National Academy of Sciences of the United States of America, 94(11), 5973–5978. https://doi.org/10.1073/pnas.94.11.5973
    Eichenbaum, H., Otto, T., &Cohen, N. J. (1994). Two functional components of the hippocampal memory system. Behavioral and Brain Sciences, 17(3), 449–472. https://doi.org/10.1017/S0140525X00035391
    Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., &Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3(11), 1149–1152. https://doi.org/10.1038/80671
    Kensinger, E. A., & Schacter, D. L. (2006). Processing emotional pictures and words: Effects of Valence and arousal. Cognitive, Affective, & Behavioral Neuroscience, 6(2), 110–126.
    Elmer, S., Burkard, M., Renz, B., Meyer, M., &Jancke, L. (2009). Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behavioral and Brain Functions : BBF, 5, 29. https://doi.org/10.1186/1744-9081-5-29
    Evans, L. H., &Wilding, E. L. (2012). Recollection and familiarity make independent contributions to memory judgments. The Journal of Neuroscience, 32(21), 7253–7257. https://doi.org/10.1523/JNEUROSCI.6396-11.2012
    Fellows, L. K., &Farah, M. J. (2007). The Role of Ventromedial Prefrontal Cortex in Decision Making: Judgment under Uncertainty or Judgment Per Se? Cerebral Cortex, 17(11), 2669–2674. https://doi.org/10.1093/cercor/bhl176
    Fleck, M. S., Daselaar, S. M., Dobbins, I. G., &Cabeza, R. (2005). Role of Prefrontal and Anterior Cingulate Regions in Decision-Making Processes Shared by Memory and Nonmemory Tasks. Cerebral Cortex, 16 (11), 1623–1630. https://doi.org/10.1093/cercor/bhj097
    Galli, G., Vadillo, M. A., Sirota, M., Feurra, M., &Medvedeva, A. (2019). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) on episodic memory. Brain Stimulation, 12(2), 231–241. https://doi.org/10.1016/j.brs.2018.11.008
    Gardiner, G., Ross, R. P., Collins, J. K., Fitzgerald, G., &Stanton, C. (1998). Development of a probiotic Cheddar cheese containing human-derived Lactobacillus paracasei strains. Applied and Environmental Microbiology, 64(6), 2192–2199. https://doi.org/10.1128/aem.64.6.2192-2199.1998
    Gardiner, J. M., &Java, R. I. (1991). Forgetting in recognition memory with and without recollective experience. Memory & Cognition, 19(6), 617–623. https://doi.org/10.3758/BF03197157
    Gardiner, J. M., Kaminska, Z., Dixon, M., &Java, R. L. (1996). Repetition of previously novel melodies sometimes increases both remember and know responses in recognition memory. Psychon Bull Rev, 3(3):366-71. doi: 10.3758/BF03210762.
    Gardiner, J. M., &Parkin, A. J. (1990). Attention and recollective experience in recognition memory. Memory & Cognition, 18(6), 579–583. https://doi.org/10.3758/BF03197100
    Gilboa, A., Alain, C., Stuss, D. T., Melo, B., Miller, S., &Moscovitch, M. (2006). Mechanisms of spontaneous confabulations: a strategic retrieval account. Brain, 129, 1399–1414. https://doi.org/10.1093/brain/awl093
    Gillund, G., &Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91(1), 1–67. https://doi.org/10.1037/0033-295X.91.1.1
    Giovanello, K. S., &Verfaellie, M. (2001). The relationship between recall and recognition in amnesia: Effects of matching recognition between patients with amnesia and controls. Neuropsychology, 15(4), 444–451. https://doi.org/10.1037/0894-4105.15.4.444
    Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., …Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027
    Guderian, S., &Düzel, E. (2005). Induced theta oscillations mediate large-scale synchrony with mediotemporal areas during recollection in humans. Hippocampus, 15(7), 901–912. https://doi.org/10.1002/hipo.20125
    Haramati, S., Soroker, N., Dudai, Y., &Levy, D. A. (2008). The posterior parietal cortex in recognition memory: a neuropsychological study. Neuropsychologia, 46(7), 1756–1766. https://doi.org/10.1016/j.neuropsychologia.2007.11.015
    Heinen, K., Sagliano, L., Candini, M., Husain, M., Cappelletti, M., &Zokaei, N. (2016). Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia, 87, 35–42. https://doi.org/10.1016/j.neuropsychologia.2016.04.028
    Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O., &Dolan, R. J. (1999). Recollection and Familiarity in Recognition Memory: An Event-Related Functional Magnetic Resonance Imaging Study. J. Neurosci., 19(10), 3962–3972.
    Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O., &Dolan, R. J. (1999). Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. The Journal of Neuroscience
    19(10), 3962–3972.
    Herron, J. E., Henson, R. N. A., &Rugg, M. D. (2004). Probability effects on the neural correlates of retrieval success: an fMRI study. Neuroimage, 21(1): 302-310. https://doi.org/10.1016/j.neuroimage.2003.09.039
    Hirst, W., Phelps, E. A., Johnson, M. K., &Volpe, B. T. (1988). More on Recognition and Recall in Amnesics. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(4), 758–762. https://doi.org/10.1037/0278-7393.14.4.758
    Horvath, J. C., Forte, J. D., &Carter, O. (2014). Evidence that transcranial direct current stimulation (tDCS) Generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy Human subjects: A systematic review. Neuropsychologia, 66, 213–236. https://doi.org/10.1016/j.neuropsychologia.2014.11.021
    Horvath, J. C., Forte, J. D., &Carter, O. (2015). Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). https://doi.org/10.1016/j.brs.2015.01.400
    Hsieh, L.-T., &Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85 Pt 2, 721–729. https://doi.org/10.1016/j.neuroimage.2013.08.003
    Hsu, C. H., Lee, C. Y., &Liang, W. K. (2016). An improved method for measuring mismatch negativity using ensemble empirical mode decomposition. Journal of Neuroscience Methods, 264, 78–85. https://doi.org/10.1016/j.jneumeth.2016.02.015
    Hsu, T.-Y., Tseng, L.-Y., Yu, J.-X., Kuo, W.-J., Hung, D. L., Tzeng, O. J. L., …Juan, C.-H. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56(4), 2249–2257. https://doi.org/10.1016/j.neuroimage.2011.03.059
    Huang, C.-R., Ahrens, K., & Chen, K.-J. (1998). A Data-driven Approach to the Mental Lexicon: Two Studies on Chinese Corpus Linguistics. Bulletin of the Institute of History and Philology Academia Sinica, 69(1), 151–180.
    Huang, N. E., Long, S. R., &Shen, Z. (1996). The Mechanism for Frequency Downshift in Nonlinear Wave Evolution. Advances in Applied Mechanics, 32(C), 59-117C. https://doi.org/10.1016/S0065-2156(08)70076-0
    Hutchinson, J. B., Uncapher, M. R., &Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343–356. https://doi.org/10.1101/lm.919109
    Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R., &Wagner, A. D. (2014). Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex, 24(1), 49–66. https://doi.org/10.1093/cercor/bhs278
    Jacobson, L., Goren, N., Lavidor, M., &Levy, D. A. (2012). Oppositional transcranial direct current stimulation (tDCS) of parietal substrates of attention during encoding modulates episodic memory. Brain Research, 1439, 66–72.
    Johnson, J. D., &Rugg, M. D. (2007). Recollection and the reinstatement of encoding-related cortical activity. Cerebral Cortex, 17(11), 2507–2515. https://doi.org/10.1093/cercor/bhl156
    Johnson, J. D., Suzuki, M., &Rugg, M. D. (2013). Recollection, familiarity, and content-sensitivity in lateral parietal cortex: a high-resolution fMRI study. Frontiers in Human Neuroscience, 7, 219. https://doi.org/10.3389/fnhum.2013.00219
    Joshua D. Koen, Preston P. Thakral, M. D. R. (2018). Transcranial magnetic stimulation of the left angular gyrus during encoding does not impair associative memory performance. Cognitive Neuroscience, 9(3–4), 127–138. https://doi.org/10.1016/j.physbeh.2017.03.040
    Kahn, I., Davachi, L., &Wagner, A. D. (2004). Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. The Journal of Neuroscience , 24(17), 4172–4180. https://doi.org/10.1523/JNEUROSCI.0624-04.2004
    Kahnt, T., Heinzle, J., Park, S. Q., &Haynes, J.-D. (2011). Decoding different roles for vmPFC and dlPFC in multi-attribute decision making. NeuroImage, 56(2), 709–715. https://doi.org/10.1016/j.neuroimage.2010.05.058
    Kim, H., &Cabeza, R. (2007). Trusting Our Memories: Dissociating the Neural Correlates of Confidence in Veridical versus Illusory Memories. Journal of Neuroscience, 27(45), 12190–12197. https://doi.org/10.1523/JNEUROSCI.3408-07.2007
    Kim, Hongkeun. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage, 50(4), 1648–1657. https://doi.org/10.1016/j.neuroimage.2010.01.051
    King, X. R., Chastelaine, M.De, Elward, R. L., Wang, T. H., &Rugg, M. D. (2015). Recollection-Related Increases in Functional Connectivity Predict Individual Differences in Memory Accuracy. Journal of Neuroscience, 35(4), 1763–1772. https://doi.org/10.1523/JNEUROSCI.3219-14.2015
    Klem, G. H., Luders, H. O., Jasper, H. H., &Elger, C. (1999). The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 52, 3–6.
    Klimesch, W., Doppelmayr, M., Yonelinas, A., Kroll, N. E., Lazzara, M., Röhm, D., &Gruber, W. (2001). Theta synchronization during episodic retrieval: neural correlates of conscious awareness. Brain Research. Cognitive Brain Research, 12(1), 33–38.
    Knowlton, B. J., &Squire, L. R. (1995). Remembering and Knowing: Two Different Expressions of Declarative Memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(3), 699–710. https://doi.org/10.1037/0278-7393.21.3.699
    Konishi, S., Wheeler, M. E., Donaldson, D. I., &Buckner, R. L. (2000). Neural correlates of episodic retrieval success. NeuroImage, 12(3), 276–286. https://doi.org/10.1006/nimg.2000.0614
    Kuzmanovic, B., Jefferson, A., &Vogeley, K. (2016). The role of the neural reward circuitry in self-referential optimistic belief updates. NeuroImage, 133, 151–162. https://doi.org/10.1016/j.neuroimage.2016.02.014
    Lin, W. J., Horner, A. J., &Burgess, N. (2016). Ventromedial prefrontal cortex, adding value to autobiographical memories. Scientific Reports, 6. https://doi.org/10.1038/srep28630
    Manenti, R., Cotelli, M., Robertson, I. H., &Miniussi, C. (2012). Transcranial brain stimulation studies of episodic memory in young adults, elderly adults and individuals with memory dysfunction: a review. Brain Stimulation, 5(2), 103–109. https://doi.org/10.1016/j.brs.2012.03.004
    McDonald, C. R., Bauer, R. M., Grande, L., Gilmore, R., &Roper, S. (2001). The role of the frontal lobes in memory: Evidence from unilateral frontal resections for relief of intractable epilepsy. Archives of Clinical Neuropsychology, 16(6), 571–585. https://doi.org/10.1016/S0887-6177(00)00068-8
    Mecklinger, A., Johansson, M., Parra, M., &Hanslmayr, S. (2007). Source-retrieval requirements influence late ERP and EEG memory effects. https://doi.org/10.1016/j.brainres.2007.07.070
    Mishkin, M., Ungerleider, L. G., &Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6, 414–417. https://doi.org/10.1016/0166-2236(83)90190-X
    Murray, J. G., Howie, C. A., &Donaldson, D. I. (2015). The neural mechanism underlying recollection is sensitive to the quality of episodic memory: Event related potentials reveal a some-or-none threshold. NeuroImage, 120, 298–308. https://doi.org/10.1016/j.neuroimage.2015.06.069
    Nelson, S. M., Cohen, A. L., Power, J. D., Wig, G. S., Miezin, F. M., Wheeler, M. E., …Petersen, S. E. (2010). A parcellation scheme for human left lateral parietal cortex. Neuron, 67(1), 156–170. https://doi.org/10.1016/j.neuron.2010.05.025
    Nessler, D., Mecklinger, A., &Penney, T. B. (2001). Event related brain potentials and illusory memories: The effects of differential encoding. Cognitive Brain Research, 10(3), 283–301. https://doi.org/10.1016/S0926-6410(00)00049-5
    Nitsche, M A, &Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. https://doi.org/10.1212/WNL.57.10.1899
    Nitsche, Michael A, Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., …Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004
    Oostenveld, R., Fries, P., Maris, E., &Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011. https://doi.org/10.1155/2011/156869
    Parks, C. M., &Yonelinas, A. P. (2009). Evidence for a memory threshold in second-choice recognition memory responses. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11515–11519. https://doi.org/10.1073/pnas.0905505106
    Parvizi, J., &Wagner, A. D. (2018). Memory, Numbers, and Action Decision in Human Posterior Parietal Cortex. Neuron, 97(1), 7–10. https://doi.org/10.1016/j.neuron.2017.12.031
    Pergolizzi, D., &Chua, E. F. (2015). Transcranial direct current stimulation (tDCS) of the parietal cortex leads to increased false recognition. Neuropsychologia, 66, 88–98. https://doi.org/10.1016/j.neuropsychologia.2014.11.012
    Pisoni, A., Turi, Z., Raithel, A., Ambrus, G. G., Alekseichuk, I., Schacht, A., …Antal, A. (2015). Separating recognition processes of declarative memory via anodal tDCS: Boosting old item recognition by temporal and new item detection by parietal stimulation. PLoS ONE, 10(3), 1–17. https://doi.org/10.1371/journal.pone.0123085
    Posner, M. I., &Petersen, S. E. (1990). The Attention System of the Human Brain. Annual Review of Neuroscience, 13(1), 25–42. https://doi.org/10.1146/annurev.ne.13.030190.000325
    Ragland, J. D., Valdez, J. N., Loughead, J., Gur, R. C., &Gur, R. E. (2006). Functional magnetic resonance imaging of internal source monitoring in schizophrenia: Recognition with and without recollection. Schizophrenia Research, 87(1–3), 160–171. https://doi.org/10.1016/j.schres.2006.05.008
    Rajaram, S. (1993). Remembering and knowing: Two means of access to the personal past. Memory & Cognition, 21(1), 89–102. https://doi.org/10.3758/BF03211168
    Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., …Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. https://doi.org/10.1073/pnas.0805413106
    Rossi, S., Pasqualetti, P., Zito, G., Vecchio, F., Cappa, S. F., Miniussi, C., …Rossini, P. M. (2006). Prefrontal and parietal cortex in human episodic memory: an interference study by repetitive transcranial magnetic stimulation. The European Journal of Neuroscience, 23(3), 793–800. https://doi.org/10.1111/j.1460-9568.2006.04600.x
    Rugg, Michael D., Mark, R.E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allen, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595–598. https://doi.org/10.3758/BF03336889
    Rugg, M. D., &Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251–257. https://doi.org/10.1016/j.tics.2007.04.004
    Rugg, M. D., Johnson, J. D., Park, H., &Uncapher, M. R. (2008). Encoding-retrieval overlap in human episodic memory: A functional neuroimaging perspective. Progress in Brain Research, 169, 339–352. https://doi.org/10.1016/S0079-6123(07)00021-0
    Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., &Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392(6676), 595–598. https://doi.org/10.1038/33396
    Rugg, M. D., &Vilberg, K. L. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23(2), 255–260. https://doi.org/10.1016/j.conb.2012.11.005
    Rugg, M. D., &Yonelinas, A. P. (2003, July 1). Human recognition memory: A cognitive neuroscience perspective. Trends in Cognitive Sciences, 7, 313–319. https://doi.org/10.1016/S1364-6613(03)00131-1
    Rugg, M., &Henson, R. (2002). Episodic memory retrieval: an (event-related) functional neuroimaging perspective. In A. E.Parker &E. L.Wilding (Eds.), The Cognitive Neuroscience of Memory Encoding and Retrieval. Retrieved from http://discovery.ucl.ac.uk/182363/
    Rushworth, M. F. S., Behrens, T. E. J., &Johansen-Berg, H. (2006). Connection patterns distinguish 3 regions of human parietal cortex. Cerebral Cortex, 16(10), 1418–1430. https://doi.org/10.1093/cercor/bhj079
    Russo, R., &Parkin, A. J. (1993). Age differences in implicit memory: More apparent than real. Memory & Cognition, 21(1), 73–80. https://doi.org/10.3758/BF03211166
    Schacter, D. L., Norman, K. A., &Koutstaal, W. (1998). The Cognitive Neuroscience of Constructive Memory. Annu Rev Psychol. 49:289-318. doi: 10.1146/annurev.psych.49.1.289.
    Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’arceuil, H. E., DeCrespigny, A. J., &Wedeen, V. J. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130(3), 630–653, https://doi.org/10.1093/brain/awl359
    Schoo, L. A., vanZandvoort, M. J. E., Biessels, G. J., Kappelle, L. J., Postma, A., &deHaan, E. H. F. (2011). The posterior parietal paradox: Why do functional magnetic resonance imaging and lesion studies on episodic memory produce conflicting results? Journal of Neuropsychology, 5(1), 15–38. https://doi.org/10.1348/174866410X504059
    Seibert, T. M., Hagler, D. J., &Brewer, J. B. (2011). Early parietal response in episodic retrieval revealed with MEG. Human Brain Mapping, 32(2), 171–181. https://doi.org/10.1002/hbm.21014
    Sestieri, C., Capotosto, P., Tosoni, A., Luca Romani, G., &Corbetta, M. (2013). Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule. Neuropsychologia, 51(5), 900–906. https://doi.org/10.1016/j.neuropsychologia.2013.01.023
    Sestieri, C., Shulman, G. L., &Corbetta, M. (2010). Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex. The Journal of Neuroscience , 30(25), 8445–8456. https://doi.org/10.1523/JNEUROSCI.4719-09.2010
    Simons, J. S., Peers, P.V, Hwang, D. Y., Ally, B. A., Fletcher, P. C., &Budson, A. E. (2008). Is the parietal lobe necessary for recollection in humans? Neuropsychologia, 46(4), 1185–1191. https://doi.org/10.1016/j.neuropsychologia.2007.07.024
    Simons, J. S., Peers, P.V, Mazuz, Y. S., Berryhill, M. E., &Olson, I. R. (2010a). Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cerebral Cortex, 20(2), 479–485. https://doi.org/10.1093/cercor/bhp116
    Simons, J. S., Peers, P.V, Mazuz, Y. S., Berryhill, M. E., &Olson, I. R. (2010b). Dissociation Between Memory Accuracy and Memory Confidence Following Bilateral Parietal Lesions. Cerebral Cortex, 20, 479–485. https://doi.org/10.1093/cercor/bhp116
    Smith, M. E. (1993). Neurophysiological manifestations of recollective experience during recognition memory judgments. Journal of Cognitive Neuroscience, 5(1), 1–13. https://doi.org/10.1162/jocn.1993.5.1.1
    Squire, L. R. (1992). Memory and the Hippocampuss: A Synthesis From Findings With Rats, Monkeys, and Humans. Psychological Review, 99(2), 195–231. https://doi.org/10.1037/0033-295X.99.2.195
    Squire, L. R., Wixted, J. T., &Clark, R. E. (2007). Recognition memory and the medial temporal lobe: A new perspective. Nature Reviews Neuroscience, 8, 872–883. https://doi.org/10.1038/nrn2154
    Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., …Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29(16), 5202–5206. https://doi.org/10.1523/JNEUROSCI.4432-08.2009
    Stagg, C. J., &Nitsche, M. a. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 17(1), 37–53. https://doi.org/10.1177/1073858410386614
    Tendolkar, I., Doyle, M. C., &Rugg, M. D. (1997). An event-related potential study of retroactive interference in memory. NeuroReport, 8(2), 501–506. https://doi.org/10.1097/00001756-199701200-00025
    Thakral, P. P., Madore, K. P., &Schacter, D. L. (2017). A Role for the Left Angular Gyrus in Episodic Simulation and Memory. The Journal of Neuroscience, 37(34), 8142–8149. https://doi.org/10.1523/JNEUROSCI.1319-17.2017
    Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O. J. L., Hung, D. L., Muggleton, N. G., …Juan, C.-H. (2012). Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. The Journal of Neuroscience , 32(31), 10554–10561. https://doi.org/10.1523/JNEUROSCI.0362-12.2012
    Tulving, Endel. (1985). Memory and consciousness. Canadian Psychology, 26, 1–12.
    Tulving, Endel. (2002). Episodic Memory: From Mind to Brain. Annual Review of Psychology, 53(1), 1–25. https://doi.org/10.1146/annurev.psych.53.100901.135114
    Tulving, Endle. (2000). Itroduction to memory. In M. S.Gazzaniga (Ed.), The New Cognitive Neurosciences (2nd ed., pp. 727–732).
    Vilberg, K. L., Moosavi, R. F., &Rugg, M. D. (2006). The relationship between electrophysiological correlates of recollection and amount of information retrieved. Brain Research, 1122(1), 161–170. https://doi.org/10.1016/j.brainres.2006.09.023
    Vilberg, K. L., &Rugg, M. D. (2007a). Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia, 45(10), 2216–2225. https://doi.org/10.1016/j.neuropsychologia.2007.02.027
    Vilberg, K. L., &Rugg, M. D. (2007b). Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia, 45(10), 2216–2225. https://doi.org/10.1016/j.neuropsychologia.2007.02.027
    Vilberg, K. L., &Rugg, M. D. (2008). Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia, 46(7), 1787–1799. https://doi.org/10.1016/j.neuropsychologia.2008.01.004
    Vilberg, K. L., &Rugg, M. D. (2009a). Functional significance of retrieval-related activity in lateral parietal cortex: evidence from fMRI and ERPs. Human Brain Mapping, 30(5), 1490–1501. https://doi.org/10.1002/hbm.20618
    Vilberg, K. L., &Rugg, M. D. (2009b). Lateral parietal cortex is modulated by amount of recollected verbal information. Neuroreport, 20(14), 1295–1299. https://doi.org/10.1097/WNR.0b013e3283306798.Lateral
    Vilberg, K. L., &Rugg, M. D. (2012). The neural correlates of recollection: Transient versus sustained fMRI effects. Journal of Neuroscience, 32(45), 15679–15687. https://doi.org/10.1523/JNEUROSCI.3065-12.2012
    Vilberg, K. L., &Rugg, M. D. (2014). Temporal dissociations within the core recollection network. Cognitive Neuroscience, 5(2), 77–84. https://doi.org/10.1080/17588928.2013.860088
    Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., &Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342. https://doi.org/10.1152/jn.90355.2008
    Vorobiova, A. N., Pozdniakov, I., &Feurra, M. (2019). Transcranial Direct Current Stimulation Effects on Memory Consolidation: Timing Matters. ENeuro, 6(3), 2–6. https://doi.org/10.1523/ENEURO.0481-18.2019
    Wagner, A. D., Shannon, B. J., Kahn, I., &Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445–453. https://doi.org/10.1016/j.tics.2005.07.001
    Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., &Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. https://doi.org/10.1016/j.neuroimage.2007.01.027
    Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, a. J., Dokucu, M. E., Brandstatt, K. L., …Voss, J. L. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 1054–1057. https://doi.org/10.1126/science.1252900
    Wheeler, M. E., &Buckner, R. L. (2004). Functional-anatomic correlates of remembering and knowing. NeuroImage, 21(4), 1337–1349. https://doi.org/10.1016/j.neuroimage.2003.11.001
    Wilding, E. L. (2000). In what way does the parietal ERP old/new effect index recollection? International Journal of Psychophysiology, 35(1), 81–87. https://doi.org/10.1016/S0167-8760(99)00095-1
    Wilding, E. L., &Rugg, M. D. (1996). An event-related potential study of recognition memory with and without retrieval of source. Brain, 119(3), 889–905. https://doi.org/10.1093/brain/119.3.889
    Williams, N., Nasuto, S. J., &Saddy, J. D. (2011). Evaluation of Empirical Mode Decomposition for Event-Related Potential Analysis. EURASIP Journal on Advances in Signal Processing, 2011, 11. https://doi.org/10.1155/2011/965237
    Wixted, J. T. (2007). Dual-Process Theory and Signal-Detection Theory of Recognition Memory.Psychological Review 114(1):152-76. https://doi.org/10.1037/0033-295X.114.1.152
    Wixted, J. T., &Mickes, L. (2010). A Continuous Dual-Process Model of Remember/Know Judgments. Psychological Review 117(4):1025-1054.https://doi.org/10.1037/a0020874
    Woodruff, C. C., Hayama, H. R., &Rugg, M. D. (2006). Electrophysiological dissociation of the neural correlates of recollection and familiarity. Brain Research, 1100(1), 125–135. https://doi.org/10.1016/j.brainres.2006.05.019
    Wu, Z., &Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41. https://doi.org/10.1142/S1793536909000047
    Xing, J., &Andersen, R. A. (2000). Models of the Posterior Parietal Cortex Which Perform Multimodal Integration and Represent Space in Several Coordinate Frames. Journal of Cognitive Neuroscience.12(4):601-14.
    doi: 10.1162/089892900562363.
    Yazar, Y., Bergström, Z. M., &Simons, J. S. (2014). Continuous Theta Burst Stimulation of Angular Gyrus Reduces Subjective Recollection. PLoS ONE, 9(10), e110414. https://doi.org/10.1371/journal.pone.0110414
    Yazar, Y., Bergström, Z. M., &Simons, J. S. (2017). Reduced multimodal integration of memory features following continuous theta burst stimulation of angular gyrus. Brain Stimulation, 10(3), 624–629. https://doi.org/10.1016/j.brs.2017.02.011
    Yonelinas, A. P. (1994). Receiver-Operating Characteristics in Recognition Memory: Evidence for a Dual-Process Model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(6), 1341–1354. https://doi.org/10.1037/0278-7393.20.6.1341
    Yonelinas, A. P. (1997). Recognition memory ROCs for item and associative information: The contribution of recollection and familiarity. Memory and Cognition, 25(6), 747–763. https://doi.org/10.3758/BF03211318
    Yonelinas, A. P. (2002). The Nature of Recollection and Familiarity: A Review of 30 Years of Research. Journal of Memory and Language, 46(3), 441–517. https://doi.org/10.1006/jmla.2002.2864
    Yonelinas, A. P., Aly, M., Wang, W. C., &Koen, J. D. (2010). Recollection and familiarity: Examining controversial assumptions and new directions. Hippocampus, 20(11), 1178–1194. https://doi.org/10.1002/hipo.20864
    Yonelinas, A. P., &Jacoby, L. L. (1996). Response bias and the process-dissociation procedure. Journal of Experimental Psychology: General, 125(4), 422–434. https://doi.org/10.1037/0096-3445.125.4.422
    Yonelinas, A. P., Kroll, N. E. A., Dobbins, I., Lazzara, M., &Knight, R. T. (1998). Recollection and familiarity deficits in amnesia: Convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology, 12(3), 323–339. https://doi.org/10.1037/0894-4105.12.3.323
    Yonelinas, A. P., Kroll, N. E. A., Quamme, J. R., Lazzara, M. M., Sauvé, M. J., Widaman, K. F., &Knight, R. T. (2002). Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neuroscience, 5(11), 1236–1241. https://doi.org/10.1038/nn961
    Yonelinas, A. P., Otten, L. J., Shaw, K. N., &Rugg, M. D. (2005a). Separating the brain regions involved in recollection and familiarity in recognition memory. The Journal of Neuroscience , 25(11), 3002–3008. https://doi.org/10.1523/JNEUROSCI.5295-04.2005
    Yonelinas, A. P., Otten, L. J., Shaw, K. N., &Rugg, M. D. (2005b). Separating the brain regions involved in recollection and familiarity in recognition memory. The Journal of Neuroscience, 25(11), 3002–3008. https://doi.org/10.1523/JNEUROSCI.5295-04.2005
    Yonelinas, A. P., &Parks, C. M. (2007). Receiver operating characteristics (ROCs) in recognition memory: a review. Psychological Bulletin, 133(5), 800–832. https://doi.org/10.1037/0033-2909.133.5.800
    Yu, S. S., Johnson, J. D., &Rugg, M. D. (2012). Hippocampal activity during recognition memory co-varies with the accuracy and confidence of source memory judgments. Hippocampus, 22(6), 1429–1437. https://doi.org/10.1002/hipo.20982
    Yu, S. S., &Rugg, M. D. (2010). Dissociation of the electrophysiological correlates of familiarity strength and item repetition. Brain Research, 1320, 74–84. https://doi.org/10.1016/j.brainres.2009.12.071
    Yuen, T. G., Agnew, W. F., Bullara, L. A., Jacques, S., &McCreery, D. B. (1981). Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery, 9(3), 292–299. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7301072
    Zaghi, S., Acar, M., Hultgren, B., Boggio, P. S., &Fregni, F. (2010). Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. The Neuroscientist : A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 16(3), 285–307. https://doi.org/10.1177/1073858409336227

    QR CODE
    :::