| 研究生: |
林惠聰 Hui-tsung Lin |
|---|---|
| 論文名稱: |
添加氧化鋯促進劑的稻殼灰分擔體銅觸媒應用於甲醇部份氧化產氫之研究 Effects of ZrO2-promoter on catalytic performance of Cu RHA catalysts for production of hydrogen by partial oxidation of methanol |
| 指導教授: |
張奉文
Feg-Wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 銅觸媒 、氧化鋯 、稻殼灰分 、甲醇部份氧化產氫 |
| 外文關鍵詞: | Cu catalyst, Zirconia, partial oxidation of methanol |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以沉澱固著法製備含ZrO2促進劑的銅金屬觸媒,分別探討ZrO2含量、煅燒溫度、進料比例(O2/CH3OH)及反應溫度等變因對觸媒活性的影響,目標為評估所製備觸媒的效能並找出最佳操作條件。研究中利用感應耦合電漿原子放射光譜儀(ICP-AES)、熱重分析儀(TGA)、X-ray繞射分析儀(XRD)、N2O解離吸附(N2O titration)、程式升溫還原(TPR)和穿透式電子顯微鏡(TEM)等儀器,分別對各觸媒進行物性分析鑑定。以甲醇部份氧化反應(POM)探討各項操作變因對於甲醇轉化率、氫氣選擇率及一氧化碳選擇率之影響。
由XRD圖譜得知,含有ZrO2的觸媒,其Cu的繞射峰會有減弱趨勢,而且在高溫煅燒下,抗燒結能力也會大幅提升。N2O及TEM結果顯示,ZrO2的存在可提高Cu在擔體上的分散度,使Cu顆粒的粒徑維持在5 nm以下。TGA的結果提供了煅燒溫度的參考範圍,對照POM活性測試可知最佳煅燒溫度為673 K,而最佳的反應物進料比為O2/CH3OH=0.3,反應溫度為523 K時觸媒有最好的活性表現。
Using rice husk ash (RHA) as support, we prepared the Cu catalysts by deposition-precipitation method. ZrO2 was added as promoter to Cu/Zr/RHA catalysts and these nano-catalysts were tested for hydrogen production by partial oxidation of methanol to identify the activity. A detail study for physical property of Cu/Zr/RHA catalysts was analyzed by ICP-AES, TGA, XRD, N2O titration, TEM, and TPR.
XRD results indicated that the copper diffraction peak of Cu/Zr/RHA was weaker than Cu/RHA, and the Cu diffraction peak would not increase with higher calcination temperature. It means ZrO2 phase stabilized the copper, preventing crystallite growth. N2O results and TEM images exhibited that ZrO2 enhanced Cu dispersion and Cu particle size was almost under 5 nm. TGA result suggests that the suitable calcination temperature is above 650 K. In TPR patterns, CuO reduction temperature was decreased by ZrO2, and this phenomenon was correlated to XRD. We tested the catalysts activity for various parameters such as promoter loading, calcination temperature, feed ratio and reaction temperature. Zirconium oxide was believed to enhance the activity of catalyst and the best operation parameters to optimize catalyst’s performance are calcination temperature 673 K; O2/CH3OH feed ratio 0.3 and reaction temperature 523 K.
Agrell J., K. Hasselbo, K. Jansson, S. G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211, 239, (2001).
Agrell, J., M. Boutonnet, I. Melian-Cabrera, J. L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterization”, Applied Catalysis A: General, 253, 201, (2003).
Águila, G., J. Jiménez, S. Guerrero, F. Gracia, B. Chornik, S. Quinteros, P. Araya, “A novel method for preparing high surface area copper zirconia catalysts: Influence of the preparation variables”, Applied Catalysis A: General, 360, 1, (2009).
Alejo, L., R. Lago, M.A. Pefia, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General, 162, 281, (1997).
Chafik, T., D. Bianchi, S. J. Teichner “On the mechanism of the methanol synthesis involving a catalyst based on zirconia support” Topics in Catalysis, 2, 1, (1995).
Chang, F.-W., H.-Y. Yu, L.S. Roselin, H.-C. Yang, T.-C. Ou, “Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxides”, Applied Catalysis A: General, 302, 157, (2006).
Chen, H.W., A.Y. Yin, X.Y. Guo, “Sodium Hydroxide–Sodium Oxalate-Assisted Co-Precipitation of Highly Active and Stable Cu/ZrO2 Catalyst in the Partial Oxidation of Methanol to Hydrogen”, Catalyst Letter, 131, 3, (2009).
Dietz, W. A., “Response factors for gas chromatographic analyses”, Journal of Gas Chromatograph, 5, 68, (1967) .
Eswaramoorthi, I., A.K. Dalai, “A comparative study on the performance of mesoporous SBA-15 supported Pd–Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production”, International Journal of Hydrogen Energy, 34, 2580, (2009).
Eswaramoorthi, I., V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu/Zn catalysts”, Applied Catalysis A: General, 313, 22, (2006).
Fixman, E.M., M.C. Abello, O.F. Gorriz, L.A. Arrua, “Preparation of Cu/SiO2 catalysts with and without tartaric acid as template via a sol-gel process”, Applied Catalysis, A: General, 319, 111, (2008).
Fisher, I.A., and A.T. Bell, “A mechanistic study of methanol decomposition over Cu/SiO2,ZrO2/SiO2 and Cu/ZrO2/SiO2”, Journal of Catalysis, 184, 357, (1999).
Fisher, I.A., Alexis T. Bell, “In-Situ infrared study of methanol synthesis from H2/CO2over Cu/SiO2 and Cu/ZrO2/SiO2” Journal of Catalysis, 172, 1, (1997).
Huang G., Biing-Jye Liaw, Cheng-Jyun Jhang, Yin-Zu Chen, “Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts”, Applied Catalysis A: General, 358, 7, (2009).
Jun, K.W., W.J. Shen,K.S. Rama, K.W. Lee, ”Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation”, Applied Catalysis, A: General, 174, 231, (1998).
Koeppel R.A., A. Baiker, A. Wokaun, “Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: Influence of preparation variables on structural and catalytic properties of catalysts”, Applied Catalysis A: General, 84, 77, (1992).
Lee J.K., J.B. Ko, D.H. Kim, “Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor”, Applied Catalysis A: Gen. 278, 25, (2004).
Luo, L., J. Wang, “A Comparative Study of Partial Oxidation of Methanol over Zinc Oxide Supported Metallic Catalysts”, Catalysis Letters, 126, 325, (2008).
Oguchi, H., H. Kanai, K. Utani, Y. Matsumura, S. Imamura, “Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts”, Applied Catalysis A: Gen. 293, 64, (2005).
Matter, P.H., Drew J. Braden, Umit S. Ozkan, “Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts”, Journal of Catalysis. 223, 2, (2004).
Real C., María D. Alcalá, José M. Criado, “Preparation of Silica from Rice Husks”, Journal of the American Ceramic Society, 79, 8, (1996).
Reitz T.L, S. Ahmed, M. Krumpelt, R. Kumar, H.H. Kung, “Methanol reforming over CuO/ZnO under oxidizing conditions”, Studies in Surface Science and Catalysis, 130, 3645, (2000).
Riitta R., M. Veringa, R. L. Keiski, “The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2”, Topics in Catalysis , 45,1, (2007).
Schuyten S., S. Guerrero, J.T. Miller, T. Shibata, E.E. Wolf, “Characterization and oxidation states of Cu and Pd in Pd–CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation”, Applied Catalysis A: General, 352, 133, (2009).
Stefan R., Frederic Vogel, “A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3”, Applied Catalyst B: Environmental, 84, 827, (2008).
Turco, M., G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol:The role of Cu and the dispersing oxide matrix”, Applied Catalysis B: Environmental, 77, 46, (2007).
van der Grift C.J.G., P.A. Elberse, A. Mulder, J.W. Geus, “Preparation of silica-supported copper catalysts by means of deposition precipitation”, Applied Catalysis., 59, 275, (1990a).
van der grift, C.J.G., Mulder A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature – programmed reduction”, Applied Catalysis, 60, 181, (1990b).
van der grift, C.J.G., Wielers A.F.H., Joghi B.P.J., Van Beijnum J., De Boer M., Versluijs-Helder M., Geus J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, Journal of Molecular Catalysis, 131, 178, (1991).
Velu, S., K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, “Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation ” , Journal of Catalysis, 194, 2, (2000).
Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151, (2003).
Yahiro, H., K. Nakaya, T. Yamamoto, K. Saiki, H. Yamaura, “Effect of calcinations temperature on the catalytic activity of copper supported onγ-alumina for the water-gas-shift reaction”, Catalysis Communications, 7, 228, (2006).
吳榮宗, “工業觸媒概論”, “國興出版社”, (1995).
郭文堯, “稻殼灰分擔載銅觸媒之製備與應用研究”, 中央大學化學工程與材料工程研究所博士論文, (2005).
歐廸政, “氧化鈦和氧化鈦-氧化鐵擔載金-銅雙金屬觸媒應用於甲醇部份氧化產氫之研究”, 中央大學化學工程與材料工程研究所博士論文, (2009).
魏長青, “稻殼灰分-氧化鋅複合擔體銅觸媒應用於甲醇部份氧化產氫之研究”, 中央大學化學工程與材料工程研究所碩士論文, (2009).