跳到主要內容

簡易檢索 / 詳目顯示

研究生: 裴令凱
Ling Kai Pei
論文名稱: 大氣層與電離層之火山爆發效應
Atmospheric and Ionospheric Effects Triggered by Volcanic Eruptions
指導教授: 劉正彥
Jann Yenq Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 火山爆發大氣層電離層
外文關鍵詞: Volcanic eruption, Atmosphere, Ionosphere
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 火山活動在地球上的天氣與氣候以及大氣層與電離層耦合扮演重要角色。劇烈的火山噴發造成大氣層溫度異常與產生電離層電子濃度擾動。本文利用福爾摩沙衛星三號紀錄與歐洲中期天氣預報中心(ECMWF)數據中之大氣溫度垂直分佈,觀測2008年至2011年共8個火山噴發指數(Volcanic Explosivity Index,VEI) ≥ 4之大規模火山噴發大氣溫度變化。8個事件中有3個呈現對流層增溫而平流層降溫,4個事件為對流層降溫而平流層增溫,以及1個兩層皆無明顯異常現象。威力強大的火山爆發產生之大氣波動可能向上傳播,引發電離層擾動。利用福衛三號掩星觀測反演之電離層電子濃度垂直分佈,可監測火山電離層波動垂直方向之波動,進一步以頻譜分析顯示主要波長約為150公里。利用聲速在電離層之理論傳播速度,並根據波長與頻率之關係,可得其火山電離層擾動之週期約為4分鐘。


    Volcanic activity plays an important role on weather/climate and atmosphere-ionosphere coupling. Volcanic eruptions can disturb atmospheric temperature and ionospheric electron density. FOMORSAT-3/COSMIC (F3/C) observations and ECMWF data are uesd to probe atmospheric temperature changes during 8 great volcanoes of Volcanic Exlosivity Index (VEI) ≥ 4. It is found that 3 out of the 8 events yield tropospheric warming and stratospheric cooling. On the contrary, 4 out of the 8 events are tropospheric cooling and stratospheric warming. 1 out of the 8 events shows no obvious change. Results show that strong volcanic eruptions could trigger pressure waves which propagate upward eventually reach the ionosphere fluctuating on the electron density within it. The HHT (Hilbert-Huang Transform) is applied to compute spectra of perturbations in the vertical profile of the ionospheric electron density and find the wavelength being around 150km. Base on the speed-wavelength relationship, the period of the perturbations are 4 minutes.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 V 表目錄 V 第一章 緒論 1 1-1 大氣層與電離層 1 1-2 火山爆發 3 1-3 研究背景 4 第二章 觀測儀器與模式 8 2-1 中尺度影像光譜儀 8 2-2 福爾摩沙衛星三號 9 2-3 歐洲中期天氣預報 11 第三章 觀測方法與結果 12 3-1 低層大氣溫度變化 14 3-2 電離層垂直擾動 30 第四章 討論與結論 32 參考文獻 40 附錄一、火山爆發前後兩天之電子濃度剖線 43

    Blanc, E., Observations in the upper atmosphere of infrasonic waves from natural or artificial sources—A summary, Ann. Geophys., 3, 673–687, 1985.
    Cheng, K. Y., and N. Huang, Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991, J. Geophys. Res., 97, 16,995., 1992.
    Dautermann, T. E., E. Calais, P. Lognonné, and G. Mattioli, Lithosphere-Atmosphere-Ionosphere Coupling after the 2003 Explosive eruption of the Soufriere Hills Volcano, Montserrat, Geophys. J. Int., 179(3), 1537–1546, 2009.
    Franklin B., Meteorological imaginations and conjectures, Memoirs of the Literary and Philosophical Society of Manchester 2nd ed., 1789: 373-77. Reprinted in Weatherwise 35, 262, 1982.
    Hedin, A. E., Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159– 1172, 1991.
    Heki, K., Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances, Geophys. Res. Lett., 33, L14303, 2006.
    Huang, N. E., Z. Shen, S. R. Long, M. C.Wu, H. H. Shih, Q. Zheng, N.-C.Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–993, 1998.
    Huang, N. E., Z. Shen, R. S. Long, A new view of nonlinear water waves–the Hilbert spectrum, Ann. Rev. Fluid Mech., 31, 417-457, 1999.
    Kanamori, H., and J. Mori, Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of Mount Pinatubo, Philippines, Geophys. Res. Lett., 19, 721–724, 1992.
    Kelly, M. C., The Earth’s Ionosphere, Plasma physics and electrodynamics, Second Edition, Academic Press., 2009.
    Lamb, H. H., Volcanic dust in the atmosphere, with a chronology and assessment of its meteorological significance, Philos. Trans. R. Soc. A 266, 425-533, 1970.
    Liu, J. Y., and Y. Y. Sun, Seismo-traveling ionospheric disturbances of ionograms observed during the 2011 Mw 9.0 Tohoku Earthquake, Earth Planets Space, 63, 897–902, 2011.
    McCormick, M. P., L. W. Thomason, and C. R. Trepte, Atmospheric effects of the Mt. Pinatubo eruption, Nature, 373, 399–404, 1995.
    Pollack, J. B., O. B. Toon, C. Sagan, A. Summers, B. Baldwin, and W. Van Camp, Volcanic explosions and climatic change: A theoretical assessment, J. Geophys. Res., 81, 1071-1083, 1976.
    Robock, A., Mass, C., The Mt. St. Helen''s volcanic eruption of 18 May 1980: large short-term surface temperature effects, Science 216, 628-630, 1982.
    Robock, A., Volcanic eruptions and climate, Rev. Geophys., 38, 191– 219, 2000.
    Smithsonian Institution, Chaitén. Bulletin of the Global Volcanism Network, v. 33, no. 4, 2008.
    Smithsonian Institution, Eyjafjallajökull. Bulletin of the Global Volcanism Network, v. 35, no. 4, 2010.
    Wang, K.-Y., S.-C. Lin, and L.-C. Lee, Immediate impact of the Mt Chaitén eruption on atmosphere from FORMOSAT-3/COSMIC constellation, Geophys. Res. Lett., 36, L03808, 2009.
    Widmer, R., and W. Zürn, Bichromatic excitation of long-period Rayleigh and air waves by the Mount Pinatubo and El Chichon volcanic eruptions, Geophys. Res. Lett., 19, 765– 768, 1992.
    Woods, A. W., and S. Self, Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height, Nature, 355, 628–630, 1992.

    QR CODE
    :::