| 研究生: |
陳慶庭 Ching-Ting Chen |
|---|---|
| 論文名稱: |
具苯環、硫醚及羧酸官能基之中孔洞材料的合成與鑑定 Synthesis and Characterization of Mesoporous Silicas with Benzene, Thioether and Carboxylic Acid Functionalities |
| 指導教授: |
高憲明
Hsien-Ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 氮氣吸脫附 、中孔洞 、汞 |
| 外文關鍵詞: | BET, SBA-1, mesoporous |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究主要分為三個部分,第一部分是以 Tetraethyl orthosilicate (TEOS) 與 1,4-bis (triethoxysilyl) propane tetrasufide (BTESPTS) 為共同矽源,使用 Cetyltriethylammonium bromide (CTEABr) 為界面活性劑在溫度為 0 °C 的酸性條件下以直接合成法合成具硫醚官能基之中孔洞材料 SBA-1,並利用溶劑萃取法移除界面活性劑。藉由一系列儀器鑑定後可發現隨著 BTESPTS 的植入量增加材料的表面積、孔洞體積以及孔洞直徑都會隨之下降,最終 BTESPTS 的含量可達到 33 %,此時仍能維持中孔洞材料 SBA-1 的結構特性。
在第二部份是將 TEOS 改變為 1,4-bis (trithoxysilyl)-benzene (BTEB),以 BTEB 與 BTESPTS為共同矽源透過直接合成法合成同時具有硫醚及苯環之雙官能基中孔洞 SBA-1 材料,並改變 BTEB 與 BTESPTS 的比例關係,逐漸提高 BTESPTS 的含量藉此觀察 BTEB 與 BTESPTS 對中孔洞材料的影響。藉由一系列的儀器鑑定來觀察樣品的物化性,最後矽源莫耳比到 BTEB : BTESPTS=2 : 1時仍能保持中孔洞材料 SBA-1 的結構特性。
第三部分中是以 TEOS 與 carboxyethylsilanetriol sodium salt (CES) 為共同矽源透過直接合成法合成具有羧酸官能基的中孔洞 SBA-1 材料,期望可以合成出具有高比例羧酸官能基且穩定性佳的產物,透過各種儀器鑑定其孔洞特性。藉由一系列的儀器鑑定來觀察樣品的物化性,最後矽源莫耳比到 TEOS : CES=2 : 1時仍能保持中孔洞材料 SBA-1 的結構特性,並藉由酸鹼滴定實驗得知其酸當量為 1.455 mmol/g。
The thesis is divided into three parts. In part one, well-ordered mesoporous silicas SBA-1 functionalized with thioether groups have been synthesized via co-condensation of Tetraethyl orthosilicate (TEOS) and 1,4-bis (triethoxysilyl) propane tetrasufide (BTESPTS) under acidic conditions. The thioether-containing units are incorporated quantitatively and reach a maximum BTESPTS loading up to 33 mol% without a significant degradation of the structural ordering of the Pm3n mesophase.
In part two, well-ordered cubic mesoporous silicas SBA-1 functionalized with benzene and thioether functional groups have been successfully synthesized via the co-condensation of 1,4-bis (trithoxysilyl)-benzene (BTEB) , and BTESPTS templated by CTEABr under acidic conditions. The thioether-containing units are incorporated quantitatively and reach a maximum BTESPTS loading up to 33 mol% without a significant degradation of the structural ordering of the Pm3n mesophase.
In part three, well-ordered cubic mesoporous silicas SBA-1 functionalized with carboxylic acid functional groups have been successfully synthesized via the co-condensation of TEOS , and CES templated by CTEABr under acidic conditions. The carboxylic acid functional groups-containing units are incorporated quantitatively and reach a maximum CES loading up to 33 mol% without a significant degradation of the structural ordering of the Pm3n mesophase.
The materials obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), nitrogen sorption measurements , 13C and 29Si magic angle spinning (MAS), IR, scanning electron microscope (SEM) and thermogravimetric analysis (TGA).
1. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-638.
2. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bull. Chem. Soc. Jpn., 1990, 63, 988-992
3. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beak, J.S. Nature, 1992, 359, 710-712
4. Biz, S.; Occelli, M. L. Catal. Rev.-Sci. Eng., 1998, 40, 329-407
5. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc., 2002, 114, 10834-10843
6. Sayari, A. Chem. Mater., 1996, 8, 1840-1852
7. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem., 1996, 100, 9906-9910
8. Hamza, A.; Srinivas, D. Catal. Lett., 2009, 128, 434-442
9. Kulkarni, S. J.; Rohitha, C. N.; Narender, N. J. Porous. Mater., 2010, 17, 321-328
10. Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, h.; Kim, J. Chem. Commun., 2010, 46, 3086-3088
11. (a) Wu, C.-G.; Bein, T. Science, 1994, 264, 1757-1759
(b) Wu, C.-G.; Bein, T. Science, 1994, 266, 1013-1015
(c) Wu, C.-G.; Bein, T. Chem. Mater., 1994, 6, 1109-1112
12. Wang, A.; Shi, Z. X.; Zhang, J.; Wang, L. J. Compos. Mater., 2008, 42, 1151-1157
13. Ward, E. P. W.; Arslan, I. ; Bleloch, A.; Thomas, J. M.; Midgley, P. A. Journal of Physics : Conference Series, 2006, 26, 207-210
14. Lee, Y. S.; Surjadi, D.; Rathman, J. F. Langmuir, 1996, 12, 6202-6210
15. Dai, Z.; Lu, G.; Bao, J.; Huang, X.; Ju, H. Electroamalysis, 2007, 19, 604-607
16. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc., 2004, 126, 13216-13217
17. Zhao, Y.; Trewyn, B. G.; Slowing, I. I.; Lin, V. S.-Y. J. Am. Chem. Soc., 2009, 131, 8398-8400
18. Hartmann, M.; Jung, D. J. Mater. Chem., 2010, 20, 844-857
19. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature, 1994, 368, 317-321
20. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. Chem. Mater., 1994, 6, 1176-1191
21. Kim, M. J.; Ryoo, R. Chem. Mater., 1999, 11, 487-491.
22. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shim, H. J.; Ryoo, R. Nature, 2000, 408, 449-453.
23. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G.D. Science, 1998, 279, 548-552.
24. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc., 1998, 120, 6024-6036
25. Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc., 2000, 122, 11925-11933
26. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater., 2000, 12, 1961-1968
27. Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B., 2000, 104, 11465-11471
28. Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B., 2001, 105, 6817-6823
29. Israelachvili, J. N. Colloids Surf: A: Physiocochem. Eng. Aspects, 1994, 1, 91
30. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Biochim. Biophys. Acta., 1977, 470, 185
31. Goyal, P. S.; Aswal, V. K. SPECIAL SECTION : SOFT CONDENSED MATTER, 2001, 80, 972-979
32. Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999
33. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. Colloids and Surfaces A, 1996, 111, 195-202
34. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4, Wiley-Interscience publications : New York, 2005
35. (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science., 1994, 265, 1413-1415
(b) Sayari, A. Chem. Mater., 1996, 8, 1840-1852
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q; Kim. A. Y.; Liu, J.; Kemner, K. M. Science, 1997, 276, 923-926
36. Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H. M. Chem. Commun., 2009, 5018-5020
37. (a) Tanglumlert, W.; Imae, Y.; White, T. J.; Wongkasemjit, S. Cata. Commun., 2009, 10, 1070-1073
(b) Wongkasemjit, S.; Tamuang, S.; Tanglumlert, W.; Imae, T. Mater. Chem. Phys., 2009, 117, 301-306
(c) Szczodrowski, K.; Pr?lot, B.; Lantenois, S.; Douillard, J. M.; Zajac, J. Microporous Mesoporous Mater., 2009, 124, 84-93
38. Pan, Y. C.; Wu, H. Y.; Lee, L. P.; Jheng, G. L.; Fey, G. T. K.; Kao, H. M. Microporous Mesoporous Mater., 2009, 123, 78-90
39. (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter., 1998, 10, 161-165
(b) Brunel, D. Microporous Mesoporous Mater., 1999, 27, 329-344
(c) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Microporous Mesoporous Mater., 1999, 28, 217-232
(d) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater., 2003, 15, 2161-2173
40. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter., 2000, 12, 1403-1419.
41. (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater., 1995, 7, 1829-1832
(b) Lim, M. H.; Stein, A. Chem. Mater., 1999, 11, 3285-3295
42. Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater., 1998, 10, 467-470
43. (a) Mercier, L.; Pinnavaia, T. J. Chem. Mater., 2000, 12, 188-196
(b) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J. Mater. Chem., 2002, 12, 3452-3457
44. (a) Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun., 1999, 201-202
(b) Kao, H. M.; Liao, C. H.; Hung, T. T.; Pan, Y. C.; Chiang, A. S. T. Chem. Mater., 2008, 20, 2412-2422
45. Wu, H. Y.; Chen, C. T.; Hung, I. M.; Liao, C. H.; Vetrivel, S.; Kao, H. M. J. Phys. Chem. C, 2010, 114, 7021-7029
46. (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater., 2001, 13, 2173-2178
(b) Kao, H. M.; Shen, T. Y.; Wu, J. D.; Lee, L. P. Microporous Mesoporous Mater., 2008, 110, 461-471
(c) Kao, H. M.; Lee, L. P.; Palani, A. Anal. Chem., 2008, 80, 3016-3019
(d) Kao, H. M.; Chiu, P. J.; Jheng, G. L.; Kao, C. C.; Tsai, C. T.; Yau, S. L.; Tsai, H. H. G.; Chou, Y. K. NeW J. Chem., 2009, 33, 2199-2203
47. Kao, H. M.; Liao, C. H.; Palani, A.; Liao, Y. C. Microporous Mesoporous Mater., 2008, 113, 212-223
48. Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc., 2002, 124, 6383-6392
49. Yan, Z.; Tao, S.; Yin, J.; Li, G. J. Mater. Chem., 2006, 16, 2347-2353
50. Fiorilli, S.; Camarota, B.; Perrachon, D.; Bruzzoniti, M. C.; Garrone, E.; Onida, B. Chem. Commun., 2009, 4402-4404
51. Sayari, A.; Hamoudi, S. Chem. Mater., 2001, 13, 3151-3168
52. (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc., 2002, 124, 13886-13895
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.; Ripmeester, J. R. Chem. Mater., 2000, 12, 3857-3863
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem. B, 2004, 108, 7934-7937
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc., 2000, 122, 5660-5661
53. Pan, Y. C.; Wu, H. Y.; Kao, C. C.; Kao, H. M.; Shieh, Y. N.; Fey, G. T. K.; Chang, J. H.; Tsai, H. H. G. J. Phys. Chem. C, 2009, 113, 18251-18258
54. Feng, X.; Fryxell, G. E.; Wang, L. Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science, 1997, 276, 923-926
55. Zhang, L.; Zhang, W.; Shi, J.; Hua, Z.; Li, Y.; Yan, J. Chem. Commun., 2003, 210–211
56. Liu, J.; Yang, J.; Yang, Q.; Wang, G.; Li, Y. Adv. Funct. Mater., 2005, 15, 1297-1302
57. (a) Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O. Nature, 2002,
416, 304
(b) Yang, Q.; Kapoor, M. P.; Inagaki, S. J. Am. Chem. Soc.,
2002, 124, 9694
(c) Okamoto, K.; Kapoor, M. P.; Inagaki, S. Chem. Commun.,
2005, 1423
(d) Liu, J.; Yang, Q.; Kapoor, M. P.; Setoyama, N.; Inagaki, S.; Yang, J.; Zhang, L. J. Phys. Chem. B, 2005, 109, 12250-12256
58. Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir, 2003, 19, 3019-3024
59. (a) Liu, N.; Assink, R. A.; Brinker, C. J. Chem. Commun., 2003, 370-371
(b) Yang, C. M.; Wang, Y.; Zibrowius, B.; Sch?th, F. Phys. Chem. Chem. Phys., 2004, 6, 2461-2467
(c) Wahab, M. A.; Kim, I.; Ha, C. S. Microporous Mesoporous Mater., 2004, 69, 19-27
(d) Yan, Z.; Tao, S.; Yin, J.; Li, G. J. Mater. Chem., 2006, 16, 2347-2353
(e) Tang, Q.; Xu, Y.; Wu. D. Journal of Solid State Chemistry, 2006, 179, 1513-1520
(f) Rosenholm, J. M.; Czuryszkiewicz, T.; Kleitz, F. Langmuir, 2007, 23, 4315-4323
(g) Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone. E. J. Sep. Sci., 2007, 30, 2414-2420
60. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.-S.; Che, S. J. Mater. Chem., 2007, 17, 1216-1221
61. Suryanarayana, C.; Norton, G. M. X-ray Diffraction : A Practical Approach, publications : New York, Plenum Press, c1998
62. http://www.srrc.gov.tw/chi/about/
63. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc.,
1938, 60, 309
64. Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E. J. Am. Chem. Soc., 1940, 62, 1723
65. (a) Brunauer, S.; Emmett, P. H. J. Am. Chem. Soc., 1937, 59, 2682
(b) Brunauer, S.; Emmett, P. H. J. Am. Chem. Soc., 1937, 59, 1553
(c) Reyerson, L. H.; Cameron, A. E. J. Phys. Chem., 1935, 39, 181
66. Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am. Chem. Soc., 1951,
73, 373-380
67. Holler, F. J.; Skoog, D. A.; Crouch, S. R. Principles of Instrumental Analysis 6th Edition, publications : Belmont, CA : Thomson Brooks/Cole, c2007
68. Atluri, R.; Sakamoto, Y.; Bennett, A. E. G. Langmuir, 2009, 25, 3189-3195