| 研究生: |
吳柏論 Po-Lun Wu |
|---|---|
| 論文名稱: |
利用熔融沉積成型技術列印聚醚醚酮 模型之機械性質改善與表面改質研究 A Research on Mechanical Properties Improvement and Surface Modification of PEEK Models Printed by Fused Deposition Modeling Technology |
| 指導教授: | 廖昭仰 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 聚醚醚酮 、積層製造 、熔融沉積成型 、田口方法 、羥基磷灰石 、表面改質 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚醚醚酮是一種高性能半晶熱塑性聚合物,可做為人體骨植入物的新興材料。其擁有生物相容性、射線可透性等醫療優勢。具備與人體骨細胞相仿的彈性模數,能有效減少植體與人體骨組織機械性質的不匹配所引起的應力遮蔽效應。此外,聚醚醚酮具有生物惰性,通常需仰賴各式表面改質方法,例如生物陶瓷材料的表面塗層,以提升植體-骨接觸面的生物活性。傳統的生產限制下,人體植入物通常只有幾種尺寸可供選擇,常無法跟患者原骨頭完美貼合。藉由積層製造技術的引入,使得植入物的生產有客製化及製作複雜外型輪廓、多孔性結構的優勢,具有相當大的發展潛力。
綜合上述,本研究基於熔融沉積成型技術(Fused Deposition Modeling, FDM),發展一套適用於聚醚醚酮材料的DELTA型三維列印系統。為提升聚醚醚酮模型表面的生物活性,開發一套以羥基磷灰石為材料的高壓粉粒噴塗系統。由於聚醚醚酮具有高於一般FDM塑性材料約200 °C的熱加工性質,提出適應的列印系統對策,並使用熱相儀探討其加熱行為。本研究運用田口方法進行列印參數分析,研究不同的加工參數與彈性模數及強度的關聯性,提出最佳機械性質之參數組合。最佳化的結果顯示,與先前試驗相比平均彈性模數訊噪比提升了1.03 dB,平均強度訊噪比則提高0.95 dB。另外,基於最佳化參數做出外型複雜的椎籠模型,驗證其在2300N的垂直負荷下仍屬彈性限度範圍內。最後,在聚醚醚酮列印品的表面噴塗羥基磷灰石塗層,探討系統在各式噴嘴設計、氣體種類及壓力變化下之噴粉量趨勢,以及不同模型孔隙大小下的粉粒附著程度,並提出日後改進之目標。
PEEK (Polyetheretherketone) is a high-performance, semi-crystalline thermal polymer which has been considered as desirable biomaterials for orthopedic implants because of characteristics such as biocompatibility and radiolucency. PEEK has an elastic modulus comparable to human cortical bone which can effectively reduce the stress shielding effect caused by the mismatch between the mechanical properties of the implant and human bone tissue. However, PEEK is biologically inert and typically rely on a variety of surface modification methods, such as surface coatings of bio-ceramic materials, to enhance the surface bioactivity and osseointegration. Under traditional production limitations, orthopedic implants are usually available in only a few sizes and often do not fit perfectly with the patient's original bone. With the introduction of Additive Manufacturing (AM) technology, there is considerable development potential for the production of implants with the advantages of customization and fabrication of complex contours and porous structures.
In this study, we develop a 3D printing system especially for PEEK material based on Fused Deposition Modeling (FDM) technology. In order to improve the bioactivity of the PEEK surface, a high-pressure powder spraying system using Hydroxyapatite as material was also developed. Printing system configuration is proposed, aiming at the thermal processing conditions of about 200 °C higher than the common FDM filament. The Taguchi method is used to investigate the printing process parameters in order to achieve optimal elastic modulus and strength of PEEK printing part. The optimized results show that the average elastic modulus signal-to-noise ratio is increased by 1.03 dB compared to the previous test, and the average tensile strength signal-to-noise ratio is increased by 0.95 dB. Based on the optimized parameters, a complex cage model was made and verified to be within the elastic limit under the vertical load of 2300N. Hydroxyapatite coating was fabricated under different pore sizes of PEEK model. From the result, the powder spraying tendency of the system under various nozzle designs, gas types and pressure changes was investigated for future improvement.
[1] J. P. Kruth, M. C. Leu and T. Nakagawa, "Progress in additive manufacturing and rapid prototyping", Cirp Annals, Vol. 47, pp. 525-540, 1998.
[2] H. Anderl, D. Z. Nedden, W. Mu, K. Twerdy, E. Zanon and K. Wicke, "CT-guided stereolithography as a new tool in craniofacial surgery", Journal of Plastic, Reconstructive & Aesthetic Surgery, Vol. 47, pp. 60-64, 1994.
[3] E. Berry, J. Brown, M. Connell, C. Craven, N. Efford and A. Radjenovic, "Preliminary experience with medical applications of rapid prototyping by selective laser sintering", Medical Engineering and Physics, Vol. 19, pp. 90-96, 1997.
[4] R. Petzold, H. F. Zeilhofer and W. Kalender, "Rapid prototyping technology in medicine—basics and applications", Computerized Medical Imaging and Graphics, Vol. 23, pp. 277-284, 1999.
[5] P. Gu and L. Li, "Fabrication of biomedical prototypes with locally controlled properties using FDM", CIRP Annals-Manufacturing Technology, Vol. 51, pp. 181-184, 2002.
[6] C. Morrison, R. Macnair, C. MacDonald, A. Wykman, I. Goldie and M. Grant, "In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts", Biomaterials, Vol. 16, pp. 987-992, 1995.
[7] S. M. Kurtz and J. N. Devine, "PEEK biomaterials in trauma, orthopedic, and spinal implants", Biomaterials, Vol. 28, pp. 4845-4869, 2007.
[8] J. Anguiano-Sanchez, O. Martinez-Romero, H. R. Siller, J. A. Diaz-Elizondo, E. Flores-Villalba and C. A. Rodriguez, "Influence of PEEK coating on hip implant stress shielding: a finite element analysis," Computational and Mathematical Methods in Medicine, 2016.
[9] G. R. Cizek and L. M. Boyd, "Imaging pitfalls of interbody spinal implants", Spine, Vol. 25, pp. 2633-2636, 2000.
[10] J. W. Brantigan, A. D. Steffee, M. L. Lewis, L. M. Quinn and J. M. Persenaire, "Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial", Spine, Vol. 25, pp. 1437-1446, 2000.
[11] J. M. Toth, M. Wang, B. T. Estes, J. L. Scifert, H. B. Seim III and A. S. Turner, "Polyetheretherketone as a biomaterial for spinal applications", Biomaterials, Vol. 27, pp. 324-334, 2006.
[12] P. Scolozzi, A. Martinez and B. Jaques, "Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant", Journal of Craniofacial Surgery, Vol. 18, pp. 224-228, 2007.
[13] M. M. Kim, K. D. Boahene and P. J. Byrne, "Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects", Archives of Facial Plastic Surgery, Vol. 11, pp. 53-57, 2009.
[14] B. Valentan, Z. Kadivnik, T. Brajlih, A. Anderson and I. Drstvensek, “Processing poly(Ether Etherketone) on a 3D printer for thermoplastic modeling”, Materials and Technology, Vol. 47, pp715-721, 2013.
[15] C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao and C. Shi, "Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material," Journal of Materials Processing Technology, Vol. 248, pp. 1-7, 2017.
[16] J.W. Tseng, C.Y. Liu, Y.K. Yen, J. Belkner, T. Bremicker and B. H. Liu, "Screw extrusion-based additive manufacturing of PEEK", Materials & Design, Vol. 140, pp. 209-221, 2018.
[17] M. Vaezi, C. Black, D. Gibbs, R. Oreffo, M. Brady, M. M. Torbati and S. Yang, " Characterization of new PEEK/HA composites with 3D HA network fabricated by extrusion freeforming ", Molecules, Vol. 26, pp. 687, 2016.
[18] J. H. Lee, H. L. Jang, K. M. Lee, H. R. Baek, K. Jin and K. S. Hong, "In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology", Acta Biomaterialia, Vol. 9, pp. 6177-6187, 2013.
[19] S. M. Kurtz, "Chapter 1 - An Overview of PEEK Biomaterials", PEEK Biomaterials Handbook, Oxford: William Andrew Publishing, pp. 1-7, 2012.
[20] S. Green and J. Schlegel, "A polyaryletherketone biomaterial for use in medical implant applications", Polym for the Med Ind Proc, Brussels, pp. 14-15, 2001.
[21] H. B. Skinner, "Composite technology for total hip arthroplasty", Clinical Orthopaedics and Related Research, pp. 224-236, 1988.
[22] M. Bottlang, D. C. Fitzpatrick and P. Augat, "Musculoskeletal Biomechanics", Orthopaedic Knowledge Update, pp. 59-72, 2011.
[23] C. H. Rivard, S. Rhalmi and C. Coillard, "In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits", Journal of Biomedical Materials Research, Vol. 62, pp. 488-498, 2002.
[24] 許明發、郭文雄,熱塑性複合材料,國興出版社,民國93年。
[25] D. Blundell, J. Chalmers, M. Mackenzie and W. Gaskin, "Crystalline morphology of the matrix of PEEK-carbon fiber aromatic polymer composites. I. Assessment of crystallinity", Sampe Quarterly, Vol. 16, pp. 22-30, 1985.
[26] 曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,碩士論文,國立中央大學,,民國106年。
[27] 楊泓璟,「以冷凍成型積層製造及固態水支撐製程製作水性生物可降解型聚胺酯與殼聚醣支架之實驗與分析」,碩士論文,國立中央大學,民國106年。
[28] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary and P. Choong, "Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review", Biomaterials, Vol. 83, pp. 127-141, 2016.
[29] A. B. Schultz and G. B. Andersson, "Analysis of loads on the lumbar spine", Spine, Vol. 6, pp. 76-82, 1981.
[30] 黃俊瑋,「聚醚醚酮之積層製造系統開發」,碩士論文,國立中央大學,,民國105年。
[31] R. Ma and T. Tang, "Current strategies to improve the bioactivity of PEEK", International Journal of Molecular Sciences, Vol. 15, pp. 5426-5445, 2014.
[32] D. Briem, S. Strametz, K. Schröoder, N. Meenen, W. Lehmann and W. Linhart, "Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces", Journal of Materials Science: Materials in Medicine, Vol. 16, pp. 671-677, 2005.
[33] W. June, An Introduction To Bioceramics , World Scientific, Vol. 1, 1993.
[34] M. A. Bakar, M. Cheng, S. Tang, S. Yu, K. Liao and C. Tan, "Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants", Biomaterials, Vol. 24, pp. 2245-2250, 2003.
[35] W. G. Paprosky and R. Burnett, "Extensively porous-coated femoral stems in revision hip arthroplasty: rationale and results", American Journal of Orthopedics, Vol. 31, pp. 471-474, 2002.
[36] C. Berndt, F. Hasan, U. Tietz, and K.-P. Schmitz, "A review of hydroxyapatite coatings manufactured by thermal spray", Advances in Calcium Phosphate Biomaterials, pp. 267-329, 2014.
[37] H. Assadi, F. Gärtner, T. Stoltenhoff and H. Kreye, "Bonding mechanism in cold gas spraying", Acta Materialia, Vol. 51, pp. 4379-4394, 2003.
[38] T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, "Development of a generalized parameter window for cold spray deposition," Acta materialia, Vol. 54, pp. 729-742, 2006.
[39] 劉偉均,材料實驗,台北市,華泰書局,民國86年。
[40] 蘇朝墩,產品穩健設計:田口品質工程方法的介紹和應用,第二版,中華民國品質協會,民國88年。
[41] 李輝煌,田口方法品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
[42] A. Sova, A. Okunkova, S. Grigoriev and I. Smurov, "Velocity of the particles accelerated by a cold spray micronozzle: experimental measurements and numerical simulation", Journal of Thermal Spray Technology, Vol. 22, pp. 75-80, 2013.
[43] P.E.E.K. Unfilled, Optima Processing Guide: Invibio Biomaterial Solution. , 2016, Available: http://www.invibio.com
[44] Q. Wang and G. S. Springer, "Moisture absorption and fracture toughness of PEEK polymer and graphite fiber reinforced PEEK", Journal of Composite Materials, Vol. 23, pp. 434-447, 1989.
[45] E. Boinard, R. Pethrick and C. MacFarlane, "The influence of thermal history on the dynamic mechanical and dielectric studies of polyetheretherketone exposed to water and brine", Polymer, Vol. 41, pp. 1063-1076, 2000.
[46] Y. Yan, "Mass flow measurement of bulk solids in pneumatic pipelines," Measurement Science and Technology, Vol. 7, pp. 1687, 1996.
[47] D. M. Devine, J. Hahn, R. G. Richards, H. Gruner, R. Wieling and S. G. Pearce, "Coating of carbon fiber‐reinforced polyetheretherketone implants with titanium to improve bone apposition", Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 101, pp. 591-598, 2013.
[48] V. Karageorgiou and D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, Vol. 26, pp. 5474-5491, 2005.
[49] F. B. Torstrick, D. L. Safranski, J. K. Burkus, J. L. Chappuis, C. S. Lee and R. E. Guldberg, "Getting PEEK to stick to bone: the development of porous PEEK for interbody fusion devices", Techniques in Orthopaedics, Vol. 32, pp. 158-166, 2017.
[50]A. B. Schultz, G. B. J. Andersson, "Analysis of Loads on the Lumbar Spine", Spine, Vol. 6, pp. 76-82, 1981.
[51]C. S. Chon, C. W. Ko, H. S. Kim, "Development of Anterior Lumbar Interbody Fusion (ALIF) PEEK Cage Based On the Korean Lumbar Anatomical Information", International Journal of Biomedical and Biological Engineering, Vol. 9, pp. 151-154, 2015.