| 研究生: |
黃凱民 Kai-min Huang |
|---|---|
| 論文名稱: |
在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控 Myogenic basic helix-loop-helix transcription factors regulate PGC-1α during terminal myogenic differentiation |
| 指導教授: |
陳盛良
Shen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 過氧化物酶增殖體激活受體γ共激活蛋白1 、慢速收縮肌 |
| 外文關鍵詞: | Stra13, PGC-1α, P/CAF, MyoD, slow-twitch muscle fiber |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成熟肌肉細胞一般分為兩種型態,第一型慢速收縮肌跟第二型快速收縮肌。在慢速收縮肌中,我們發現含有大量粒線體,因此可以藉由氧化電子傳遞鏈提供大量ATP提供人體生存所需的能量,反觀,快速收縮肌在能量代謝方面比較偏向醣解代謝,在外觀上,因為慢速收縮肌含有多血紅蛋白所以比較偏向紅色。目前我們知道PPAR-γ輔助轉錄因子PGC-1α在肌肉纖維的決定上有莫大關鍵性,而成體上主要表現在慢速收縮肌中。而之前文獻指出,轉殖鼠系統中,若過量表現PGC-1α在肌肉細胞中,會使得肌肉細胞走向慢速肌肉的趨勢,從之前觀察,我們知道在PGC-1α啟動子區有兩個非常保留E-box(CANNTG),較轉錄起始點遠的E-box我們稱為E1-box,較轉錄起始點近的E-box稱為E2-box,由之前觀察我們知道MyoD 活化PGC-1α時,是藉由直接結合於PGC-1α啟動區的E2-box。藉由生物資訊分析另一個E-box是可能被Stra13所結合。從promoter assay,我們知道Stra13會抑制MyoD所主導PGC-1α的活化,而可能藉由的方式是經由跟MyoD競爭coactivator-P/CAF,而導致MyoD活化PGC-1α有所被抑制。
Skeletal muscle are generally classified as two types – type I (slow - twitch) and type II (fast - twitch). The former is rich in mitchondria and thus provides constant ATP through oxidative metabolism. The latter depends on the glycolytic metabolism as the energy source. PGC-1α is a transcriptional coactivator mainly expressed in the slow-twitch fibers. Previous studies indicated that over-expression of PGC-1α promotes the conversion from fast-twitch fibers to slow-twitch fibers. According to previous observations, we know that the E2-box on the PGC-1α promoter is essential for MyoD-mediated transactivation. In this study, we found that Stra13, a putative E1-box binding transcriptional repressor, repressed the MyoD mediated PGC-1α promoter activation. The interaction between MyoD and Stra13 was almost undetectable by GST-Pull down assay and EMSA. In addition, over-expression of P/CAF, but not CBP, can rescue the Stra13-mediated repression. These data suggest that Stra13 represses MyoD-mediated PGC-1 activation by sequestering P/CAF from MyoD.
1. Berchtold, M.W., Brinkmeier, H. & Muntener, M. Calcium Ion in Skeletal Muscle: Its Crucial Role for Muscle Function, Plasticity, and Disease. Physiol. Rev. 80, 1215-1265 (2000).
2. Yan, Z., Serrano, A.L., Schiaffino, S., Bassel-Duby, R. & Williams, R.S. Regulatory Elements Governing Transcription in Specialized Myofiber Subtypes. J. Biol. Chem. 276, 17361-17366 (2001).
3. Yagami-Hiromasa, T. et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652-656 (1995).
4. Molkentin, J.D., Black, B.L., Martin, J.F. & Olson, E.N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125-1136 (1995).
5. Sartorelli, V., Huang, J., Hamamori, Y. & Kedes, L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17, 1010-1026 (1997).
6. Abraham, S.E., Lobo, S., Yaciuk, P., Wang, H.G. & Moran, E. p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8, 1639-47 (1993).
7. Rupp, R.A.W., Singhal, N. & Veenstra, G.J.C. When the embryonic genome flexes its muscles. Chromatin and myogenic transcription regulation. European Journal of Biochemistry 269, 2294-2299 (2002).
8. Puigserver, P. et al. A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell 92, 829-839 (1998).
9. Puigserver, P. et al. Activation of PPAR Coactivator-1 Through Transcription Factor Docking. Science 286, 1368-1371 (1999).
10. Knutti, D., Kressler, D. & Kralli, A. Regulation of the transcriptional coactivator PGC-1 via MAPK-sensitive interaction with a repressor. PNAS 98, 9713-9718 (2001).
11. Puigserver, P. & Spiegelman, B.M. Peroxisome Proliferator-Activated Receptor-{gamma} Coactivator 1{alpha} (PGC-1{alpha}): Transcriptional Coactivator and Metabolic Regulator. Endocr Rev 24, 78-90 (2003).
12. Puigserver, P. et al. Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPAR[gamma] Coactivator-1. Molecular Cell 8, 971-982 (2001).
13. Teyssier, C., Ma, H., Emter, R., Kralli, A. & Stallcup, M.R. Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19, 1466-73 (2005).
14. Lin, J. et al. Transcriptional co-activator PGC-1[alpha] drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
15. Naya, F.J. et al. Stimulation of Slow Skeletal Muscle Fiber Gene Expression by Calcineurin in Vivo. J. Biol. Chem. 275, 4545-4548 (2000).
16. Michael, L.F. et al. Restoration of Insulin-Sensitive Glucose Transporter (GLUT4) Gene Expression in Muscle Cells by the Transcriptional Coactivator PGC-1. Proceedings of the National Academy of Sciences of the United States of America 98, 3820-3825 (2001).
17. Chin, E.R. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499-2509 (1998).
18. Russell, A.P. et al. Endurance Training in Humans Leads to Fiber Type-Specific Increases in Levels of Peroxisome Proliferator-Activated Receptor-{gamma} Coactivator-1 and Peroxisome Proliferator-Activated Receptor-{alpha} in Skeletal Muscle. Diabetes 52, 2874-2881 (2003).
19. Liu, C., Li, S., Liu, T., Borjigin, J. & Lin, J.D. Transcriptional coactivator PGC-1[agr] integrates the mammalian clock and energy metabolism. Nature 447, 477-481 (2007).
20. Rodriguez-Calvo, R. et al. PGC-1{beta} Down-Regulation Is Associated With Reduced ERR{alpha} Activity and MCAD Expression in Skeletal Muscle of Senescence-Accelerated Mice. J Gerontol A Biol Sci Med Sci 61, 773-780 (2006).
21. Monsalve, M. et al. Direct Coupling of Transcription and mRNA Processing through the Thermogenic Coactivator PGC-1. Molecular Cell 6, 307-316 (2000).
22. Andersson, U. & Scarpulla, R.C. PGC-1-Related Coactivator, a Novel, Serum-Inducible Coactivator of Nuclear Respiratory Factor 1-Dependent Transcription in Mammalian Cells. Mol. Cell. Biol. 21, 3738-3749 (2001).
23. Freiman, R.N. & Herr, W. Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP. Genes Dev. 11, 3122-3127 (1997).
24. Boudjelal, M. et al. Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19