預鑄結構承載效能之優劣有賴行為良好之接合設計,就建築物耐震設計而言,接合在反覆載重下之良好反應更為重要,由於構件接合處為傳遞力量最重要樞紐,預鑄構件雖然具有高品質的優點,但若於構件接合處破壞,仍然無法發揮構材之承載力。目前,此預鑄預力結構系統之研究,多集中於其承壓承彎之梁柱接頭設計。針對柱構件與基礎接合之研究資訊較為缺乏。本研究提出一具有較佳消能功能,同時可維持構材回復作用之消能式預力柱基礎,此類柱基礎設計,除預力大小之考量外,其另一主要考量參數,則為橡膠力學性質之探討;為界定有效之基礎設計細節,本研究進行一系列試驗,以試驗資訊界定其承載行為,並建立其設計參考資訊。研究結果顯示,預力接合系統可有效抑制殘餘變形之發生。加入橡膠後,且有消能效果。此試體經過多次試驗,構件也無顯著破壞。初始預力較大時,損失比例較小,且初始勁度也較大。
Prestressed precast structural systems are considered efficient structural forms for building constructions. The validity of such designs is justified only when adequate seismic performance is achieved. In order to develop desirable structural performance, the column base connections must possess sufficient stiffness and strength. This study investigated the feasibility of adopting rubber pad in the seismic design of prestressed precast column to base connection. Test results show that the re-centering mechanisms of the connections were effectively sustained. The energy dissipating device added significant stiffness and exhibited stable hysteretic behavior under various magnitudes of prestress, which justified its applicability to the seismic design of prestressed column to base connection.
[1] Priestley, M. J. N. and Tao, J. R. (1993), “Seismic response of precast prestressed concrete frames with partially debonded tendons”, PCI Journal, Jan.-Feb, pp. 58-66.
[2] Ricles, J. M., Sause , R., Pebg S. W., and Lu, L. W. (2002), “Experimental Evaluation of earthquake resistant posttensioned connections”, Journal of Structural Engineering, July, pp. 850-859.
[3] Christopoulos, C. , Filiatrault, A. , Uang, C. M. , Folz, B. (2002), “Posttensioned energy dissipating4 connections for moment-resisting steel frames”, Journal of Structural Engineering, September, v 128, n 9, pp. 1111-1120.
[4] Zatar, W. and Mutsuyoshi, H. (2000), “Influence of strength ratio on behavior of partially prestressed concrete bridge piers,” Transactions of the Japan Concrete Institute, vol. 22, p 265-272.
[5] Lee, O. S. and Kim, K. J. (2003), “Dynamic compressive deformation behavior of rubber materials”, Journal of materials science, vol. 22, pp. 1157–1160.
[6] Yamagishi, M. and Kawashima, K. (2004), “Development of a rubber layer built-in reinforced oncrete column in the plastic hinge region ,” Journal of structural mechanics and earthquake engineering, 752/I-66, pp. 43-62.
[7] Stone, W. C. and Breen, J. E. (1984), “Behavior of Post-tensioned Girder Anchorage Zones” , J. PCI, vol. 29, no. 1, January-February, pp. 64-75.
[8] ACI Committee 318 (2002), “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02)”, American Concrete Institute, Farmington Hills, Michigan.
[9] American Institute of Steel Construction (1994), Manual of Steel Construction - Load and Resistance Factor Design, Second Edition, Chicago, IL
[10] American Institute of Steel Construction (1991), Manual of Steel Construction - Allowable Stress Design , Ninth Edition, Chicago, IL.
[11] Robert E. E. (2002) “Design-Construction of The Paramount-A39-Story Prestressed Concrete Apartment Building”, PCI Journal, July-August, pp. 56-71.
[12] DSI Company, “DYWIDAG Bonded Post-Tensioning Systems”
[13] 徐健一、陳正平(1987),“鋼構件在混凝土結構體上之錨定設計”,Journal of Structure Engineering Vol.2, No3, July, pp. 11-25.
[14] 林育祺( 1996 ),“鉛心橡膠支承墊之擬靜態與動態遲滯特性”, 國立台灣工業技術學院營建工程技術研究所,碩士論文。
[15] 黃春景( 2000 ),“橡膠層墊受壓時之應力分析”,國立成功大學土木工程研究所,碩士論文。
[16] 魏希賢( 2002 ),“中空雙鋼管混凝土柱埋入型基礎接合耐震行為研究”,國立台灣大學土木工程研究所,碩士論文。
[17] 林煥文( 2002),“鋼管混凝土柱基礎耐震行為研究”,國立中央大學土木工程研究所,碩士論文。