| 研究生: |
洪意惠 Yi-hui Hung |
|---|---|
| 論文名稱: | The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation |
| 指導教授: |
吳嫻
Hsien Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 認知與神經科學研究所 Graduate Institute of Cognitive and Neuroscience |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 時間 、空間注意力 、數字 |
| 外文關鍵詞: | Spatial attention, Time, Number |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The SNARC (Spatial Numerical Association Response Code) effect 指出受試者會把數字與心理空間中對應。原初的實驗呈現人對於數字的內在表徵是由左到右的排列在心理空間(在一個奇偶數的判斷作業中小的數字用左手做反應會比較快;大的數字用右手做反應會比較快),但是這樣方向性的對應會受到閱讀經驗的影響,大部分的拼音文字,其閱讀方式是由左到右,而SNARC的效果可能是受到這樣閱讀經驗的影響所造成的,本論文的重點就是要探討這樣的問題,簡而言之,以母語為中文的受試者為例,在其閱讀經驗中,中文可以由上到下地閱讀,那麼中文使用者會如何在具有方向性的空間中表徵數字?
在本論文的第一部分我們使用阿拉伯數字(例如:1)以及簡單(例如:一)及複雜中文數字(例如:壹)為實驗刺激,要求母語為中文的受試者對數字做奇偶數判斷,並在不同實驗中操弄反應首的擺放方式(左右擺放或是上下擺放),來檢視數字是否會有直式的空間表徵。另外,中文數字除了可以用來表示數字之外,也可以與 “月”字結合變成具有時間的涵義(例如: 一月),因此我們將這樣的月份刺激放在一個大小月判斷的作業裡讓受試者做反應,來探討在SNARC effect中究竟是數量(magnitude)還是序列性訊息(sequential information) (時間並沒有數量大小的概念,但是有序列的概念)與空間做對應。最後我們要探討的問題是:數字與空間的對應是否依定要透過左右手做反應才能得到?數字能不能在不透過左右手做反應的情況下影響我們的內隱空間注意力(covert spatial attention)?
實驗的結果指出:數字與空間的對應(無論是否要透過左右手做反應)是受閱讀經驗所決定的。在以阿拉伯數字為刺激的情況下,數字與空間是已由左到右的方式對應;但是,在以中文數字為刺激的情況下,數字與空間是以由上到下的方式對應。然而,當中文數字被用來表達月份的意思時,月份與空間卻是以由左到右的方式對應。這樣的結果似乎顯示閱讀經驗不足已決定序列性訊息與空間的對應方向。我們將在論文中做更深入的探討。
The SNARC (Spatial Numerical Association Response Code) effect shows that human can map numbers sequentially onto a left-to-right orientation, but the direction of the number line is influenced by reading experience. In Chinese text, words can be arranged horizontally and vertically. In the first part of this thesis, both Arabic numbers and Chinese number words are used to demonstrate the influence from reading experience on the SNARC effect in native speakers of Chinese. Additionally, more recent studies show that the SNARC effect is not specific to numbers. Sequential information, such as months and alphabetic letters, are spatially represented on a mental line as well. Hence, in the second part of the thesis, Chinese month words in the numerically simplified form (e.g., 一月) are used to investigate whether there is also a mapping between Chinese month words and space, and whether the mapping is also influenced by reading direction of Chinese text. The third part of the thesis is aimed at exploring whether numbers in different notations might shift covert spatial attention without the mediation of any effector (i.e., eyes and hands).
Two conclusions are drawn from our investigation. First, the mapping between numbers and space, with or without the mediation of effectors, is modulated by reading direction. Specifically, Chinese participants tend to arrange Arabic numbers in a left-to-right orientation and Chinese simple-form numerical words in a top-to-bottom orientation, which is likely resulted from their previous encounter with these symbols. Second, the mapping between Chinese month words and space, mainly in a horizontal orientation, is found, regardless of stimulus alignment. This finding underscores the influence of context/experience on the mental representation of sequential information.
Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number
magnitude and grip aperture interaction. Neuroreport, 15(18), 2773-2777.
Bachtold, D. B., M., & Brugger, P. (1998). Stimulus-response compatibility in
representational space. Neuropsychologia, 36(8), 731-735.
Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting Parity and
Magnitude from Arabic Numerals: Developmental Changes in Number Processing
and Mental Representation,. Journal of Experimental Child Psychology, 74(4),
286-308.
Boroditsky, L. (2001). Does Language Shape Thought?: Mandarin and English
Speakers'' Conceptions of Time. Cognitive Psychology, 43(1), 1-22.
Brannon, E. M., & Terrace, H. S. (2000). Representation of the numerosities 1-9 by
rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: Animal
Behavior, 26(1), 31-49.
Caessens, B., Hommel, B., Reynvoet, B., & Van der Goten, K. (2004).
Backward-compatibility effects with irrelevant stimulus-response overlap: The
case of the SNARC effect. Journal of General Psychology, 131(4), 411-425.
Calabria, M. A.,& Rossetti, Y. (2005). Interference between number processing and line bisection: a methodology. Neuropsychologia, 43(5), 779-783.
Cheng SK., Tsai, CC., Lee, JR., Hung, D. L., & Tzeng, O. JL. (2005, April). Comparing Numbers in Arabic Digits, Complex/Simple Chinese Numerals and Dot Arrays: An Event and Dot Arrays: An Event-Related Potential (ERP) Study. Poster session presented at the annual meeting of the Cognitive Neuroscience Society, New York.
Clark, H. (1973). Space, time semantics, and the child. In T. E. Moore (Ed.), Cognitive Development and the Acquisition of Language. New York: Academic Press.
Dehaene, S. (1989). The psychophysics of numerical comparison: a reexamination of
apparently incompatible data. Perceptual Psychophysics, 6, 557-566.
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
Dehaene, S., Bossini, S. & Giraux P. (1993). The mental representation of parity and
numerical magnitude. Journal of Experimental Psychology: General, 122,
371--396.
Delazer, M., & Butterworth, B. (1997). A dissociation of number meanings. Cognitive
neurophysiology, 14(4), 613?36.
Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of
magnitude information in numerical processing: Evidence from the SNARC
effect. Mathematical Cognition, 2, 95-110.
Fias, W. (2001). Two routes for the processing of verbal numbers: evidence from the
SNARC effect. Psychological Research, 65(4), 250-259.
Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect
feature-based attention depending on the overlap of neural circuits. Cognitive
Brain Research, 12(3), 415-423.
Fischer, M., Warlop, N., Hill, R., & Fias, W. (2004). Oculomotor bias induced by
number perception. Journal of Experimental Psychology, 51(2), 91-97.
Fischer, M. H. (2001). Number processing induces spatial performance biases.
Neurology, 57(5), 822-826.
Fischer, M. H., Castel, A.D., Dodd, M.D., Pratt, J. (2003). Perceiving numbers causes
spatial shifts of attention. Nature Neuroscience, 6(6), 555-556.
Gentner, D. (2001). Spatial metaphors in temporal reasoning. In M. Gattis (Ed.),
Spatial schemas in abstract thought (pp. 203-222). Cambridge, MA: MIT Press.
Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing
architecture underlying Simon and SNARC effects. European Journal of
Cognitive Psychology, 17(5), 659 - 673.
Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal
sequences is spatially organized. Cognition, 87(3), B87-B95.
Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica, In Press, Corrected Proof.
Hommel, B. (1994). Spontaneous decay of response code activation. Psychological Research, 56, 261-268.
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between Number and Space in Parietal Cortex. Nature Reviews Neuroscience, 6(6), 435-448.
Huntley-Fenner, G. & Cannon., E. (2000). Preschoolers'' Magnitude Comparisons are
Mediated by a Preverbal Analog Mechanism. Psychological Science, 11(2),
147-152.
Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers:
evidence from the SNARC effect. Memory and Cognition, 32(4), 662-673.
Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that
the SNARC effect has its functional locus in a response selection stage. Cognitive
Brain Research, 24(1), 48-56.
Kornblum, S. H asbroucq., T.; Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97(2), 253-270.
Lavidor, M., Brinksman, V., & Gobel, S. M. (2004). Hemispheric asymmetry and the
mental number line: comparison of double-digit numbers. Neuropsychologia,
42(14), 1927-1933.
Mapelli, D., Rusconi, E., & Umilta, C. (2003). The SNARC effect: an instance of the
Simon effect? Cognition, 88(3), B1-B10.
Nieder, A., & Miller, E. K. (2004). Analog Numerical Representations in Rhesus
Monkeys: Evidence for Parallel Processing. Journal of Cognitive Neuroscience,
16(5), 889-901.
Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical
information in the monkey. Proceedings of National Academy of Sciences, 101(19), 7457-7462.
Nuerk, H., Wood, G, & Willmes, K. (2005). The universal SNARC effect: the
association between number magnitude and space is amodal. Experimental
Psychology, 52(3), 187-194.
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and Approximate
Arithmetic in an Amazonian Indigene Group. Science, 306(5695), 499-503.
Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task. NeuroImage, 14(5), 1013-1026.
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983-993.
Ratinckx, E., & Brysbaert, M. (2002). Interhemispheric stroop-like interference in
number comparison: evidence for strong interhemispheric integration of semantic
number information. Neuropsychology, 16(2), 217-229.
Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Does Action Make the Link Between Number and Space Representation?.
Visuo-Manual Adaptation Improves Number Bisection in Unilateral Neglect.
Psychological Science, 15(6), 426-430.
Rusconi, E., Kwan, B., Giordano, B. L., Umilta, C., & Butterworth, B. (2006). Spatial
representation of pitch height: the SMARC effect. Cognition, 199(2), 113-129.
Schwarz, W., & Keus, I. (2004). Moving the eyes along the mental number line:
comparing SNARC effects with saccadic and manual responses. Perceptual
Psychophysics, 66(4), 651-664.
Simon, O., Mangin, JF., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475-487.
Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in
5-year-old children and adults. Proceedings of National Academy of Sciences, 95(13), 7836-7841.
Turconi, E., & Seron, X. (2002). Dissociation between order and quantity meanings in a patient with Gerstmann syndrome. Cortex, 38, 911-914.
Turconi, E., Campbell, J. I. D., & Seron, X. (2006). Numerical order and quantity
processing in number comparison. Cognition, 98(3), 273-285.
Turconi, E., Jemel, B., Rossion, B., & Seron, X. (2004). Electrophysiological
evidence for differential processing of numerical quantity and order in humans.
Cognitive Brain Research, 21(1), 22-38.
Vuilleumier, P., Ortigue, S., Brugger, P. (2004). The number space and neglect. Cortex, 40(2), 399-410.
Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and
quantity. Trends in Cognitive Sciences, 7(11), 483-488.
Wynn, K. (1992). Addition and subtraction by human infants. 358(6389), 749-750.
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old
infants. Cognition, 74(1), B1-B11.
Zorzi, M., Priftis, K., & Umilta, C. (2002). Brain damage Neglect disrupts the mental
number line. Nature, 417(6885), 138-139.