跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪意惠
Yi-hui Hung
論文名稱: The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation
指導教授: 吳嫻
Hsien Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
畢業學年度: 94
語文別: 英文
論文頁數: 91
中文關鍵詞: 時間空間注意力數字
外文關鍵詞: Spatial attention, Time, Number
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The SNARC (Spatial Numerical Association Response Code) effect 指出受試者會把數字與心理空間中對應。原初的實驗呈現人對於數字的內在表徵是由左到右的排列在心理空間(在一個奇偶數的判斷作業中小的數字用左手做反應會比較快;大的數字用右手做反應會比較快),但是這樣方向性的對應會受到閱讀經驗的影響,大部分的拼音文字,其閱讀方式是由左到右,而SNARC的效果可能是受到這樣閱讀經驗的影響所造成的,本論文的重點就是要探討這樣的問題,簡而言之,以母語為中文的受試者為例,在其閱讀經驗中,中文可以由上到下地閱讀,那麼中文使用者會如何在具有方向性的空間中表徵數字?
    在本論文的第一部分我們使用阿拉伯數字(例如:1)以及簡單(例如:一)及複雜中文數字(例如:壹)為實驗刺激,要求母語為中文的受試者對數字做奇偶數判斷,並在不同實驗中操弄反應首的擺放方式(左右擺放或是上下擺放),來檢視數字是否會有直式的空間表徵。另外,中文數字除了可以用來表示數字之外,也可以與 “月”字結合變成具有時間的涵義(例如: 一月),因此我們將這樣的月份刺激放在一個大小月判斷的作業裡讓受試者做反應,來探討在SNARC effect中究竟是數量(magnitude)還是序列性訊息(sequential information) (時間並沒有數量大小的概念,但是有序列的概念)與空間做對應。最後我們要探討的問題是:數字與空間的對應是否依定要透過左右手做反應才能得到?數字能不能在不透過左右手做反應的情況下影響我們的內隱空間注意力(covert spatial attention)?
    實驗的結果指出:數字與空間的對應(無論是否要透過左右手做反應)是受閱讀經驗所決定的。在以阿拉伯數字為刺激的情況下,數字與空間是已由左到右的方式對應;但是,在以中文數字為刺激的情況下,數字與空間是以由上到下的方式對應。然而,當中文數字被用來表達月份的意思時,月份與空間卻是以由左到右的方式對應。這樣的結果似乎顯示閱讀經驗不足已決定序列性訊息與空間的對應方向。我們將在論文中做更深入的探討。


    The SNARC (Spatial Numerical Association Response Code) effect shows that human can map numbers sequentially onto a left-to-right orientation, but the direction of the number line is influenced by reading experience. In Chinese text, words can be arranged horizontally and vertically. In the first part of this thesis, both Arabic numbers and Chinese number words are used to demonstrate the influence from reading experience on the SNARC effect in native speakers of Chinese. Additionally, more recent studies show that the SNARC effect is not specific to numbers. Sequential information, such as months and alphabetic letters, are spatially represented on a mental line as well. Hence, in the second part of the thesis, Chinese month words in the numerically simplified form (e.g., 一月) are used to investigate whether there is also a mapping between Chinese month words and space, and whether the mapping is also influenced by reading direction of Chinese text. The third part of the thesis is aimed at exploring whether numbers in different notations might shift covert spatial attention without the mediation of any effector (i.e., eyes and hands).
    Two conclusions are drawn from our investigation. First, the mapping between numbers and space, with or without the mediation of effectors, is modulated by reading direction. Specifically, Chinese participants tend to arrange Arabic numbers in a left-to-right orientation and Chinese simple-form numerical words in a top-to-bottom orientation, which is likely resulted from their previous encounter with these symbols. Second, the mapping between Chinese month words and space, mainly in a horizontal orientation, is found, regardless of stimulus alignment. This finding underscores the influence of context/experience on the mental representation of sequential information.

    Introduction 5 1. The SNARC effect in the original study 6 1.1. The SNARC effect is based on magnitude 7 1.2. Response mapping 8 1.3. Robustness of the SNARC effect 8 2. Why numbers are spatially represented? 10 2.1. Numbers and spatial perception task 10 2.2. The neural evidence and the patient study 12 2.3. Is only magnitude associated with space? Is ordinal information also involved in the SNARC effect? 14 3. The directionality and reading experiences 17 4. The locus of the SNARC effect 18 4.1. At the late stage (mapping with effectors) 18 4.2. At the late stage (without mapping with effectors) 23 5. The purpose of the present study 25 5.1. The Current issues 25 5.2. Study Plan 27 Experiment 1 28 Method 28 Results and discussion 29 Experiment 2 34 Method 35 Results and discussion 35 Experiment 3-1 and 3-2 40 Method 41 Results and discussion 42 Experiment 4 47 Method 47 Results and discussion 48 Experiment 5 51 Method 52 Results and discussion 54 Experiment 6 58 Method 58 Results and discussion 59 General Discussion 62 A Summary of the results in the current study 62 1. Numbers in different notations and their spatial representation 63 2. The effect locus of the spatial representation in numbers 64 2.1 Time course 64 2.2 The influence of the effectors 65 3. Spatial representation of months 67 4. A commonality among Magnitude, time and space? 69 4.1. Walsh’s theory of magnitude 69 4.2. The influence of the reading experience 71 4.2.1 From our study 71 4.2.2 From a developmental study 72 4.2.3 From the patient study 73 Conclusion 74 Appendix 76 Reference 81

    Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number
    magnitude and grip aperture interaction. Neuroreport, 15(18), 2773-2777.
    Bachtold, D. B., M., & Brugger, P. (1998). Stimulus-response compatibility in
    representational space. Neuropsychologia, 36(8), 731-735.
    Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting Parity and
    Magnitude from Arabic Numerals: Developmental Changes in Number Processing
    and Mental Representation,. Journal of Experimental Child Psychology, 74(4),
    286-308.
    Boroditsky, L. (2001). Does Language Shape Thought?: Mandarin and English
    Speakers'' Conceptions of Time. Cognitive Psychology, 43(1), 1-22.
    Brannon, E. M., & Terrace, H. S. (2000). Representation of the numerosities 1-9 by
    rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: Animal
    Behavior, 26(1), 31-49.
    Caessens, B., Hommel, B., Reynvoet, B., & Van der Goten, K. (2004).
    Backward-compatibility effects with irrelevant stimulus-response overlap: The
    case of the SNARC effect. Journal of General Psychology, 131(4), 411-425.
    Calabria, M. A.,& Rossetti, Y. (2005). Interference between number processing and line bisection: a methodology. Neuropsychologia, 43(5), 779-783.
    Cheng SK., Tsai, CC., Lee, JR., Hung, D. L., & Tzeng, O. JL. (2005, April). Comparing Numbers in Arabic Digits, Complex/Simple Chinese Numerals and Dot Arrays: An Event and Dot Arrays: An Event-Related Potential (ERP) Study. Poster session presented at the annual meeting of the Cognitive Neuroscience Society, New York.
    Clark, H. (1973). Space, time semantics, and the child. In T. E. Moore (Ed.), Cognitive Development and the Acquisition of Language. New York: Academic Press.
    Dehaene, S. (1989). The psychophysics of numerical comparison: a reexamination of
    apparently incompatible data. Perceptual Psychophysics, 6, 557-566.
    Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1-42.
    Dehaene, S., Bossini, S. & Giraux P. (1993). The mental representation of parity and
    numerical magnitude. Journal of Experimental Psychology: General, 122,
    371--396.
    Delazer, M., & Butterworth, B. (1997). A dissociation of number meanings. Cognitive
    neurophysiology, 14(4), 613?36.
    Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of
    magnitude information in numerical processing: Evidence from the SNARC
    effect. Mathematical Cognition, 2, 95-110.
    Fias, W. (2001). Two routes for the processing of verbal numbers: evidence from the
    SNARC effect. Psychological Research, 65(4), 250-259.
    Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect
    feature-based attention depending on the overlap of neural circuits. Cognitive
    Brain Research, 12(3), 415-423.
    Fischer, M., Warlop, N., Hill, R., & Fias, W. (2004). Oculomotor bias induced by
    number perception. Journal of Experimental Psychology, 51(2), 91-97.
    Fischer, M. H. (2001). Number processing induces spatial performance biases.
    Neurology, 57(5), 822-826.
    Fischer, M. H., Castel, A.D., Dodd, M.D., Pratt, J. (2003). Perceiving numbers causes
    spatial shifts of attention. Nature Neuroscience, 6(6), 555-556.
    Gentner, D. (2001). Spatial metaphors in temporal reasoning. In M. Gattis (Ed.),
    Spatial schemas in abstract thought (pp. 203-222). Cambridge, MA: MIT Press.
    Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing
    architecture underlying Simon and SNARC effects. European Journal of
    Cognitive Psychology, 17(5), 659 - 673.
    Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal
    sequences is spatially organized. Cognition, 87(3), B87-B95.
    Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica, In Press, Corrected Proof.
    Hommel, B. (1994). Spontaneous decay of response code activation. Psychological Research, 56, 261-268.
    Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between Number and Space in Parietal Cortex. Nature Reviews Neuroscience, 6(6), 435-448.
    Huntley-Fenner, G. & Cannon., E. (2000). Preschoolers'' Magnitude Comparisons are
    Mediated by a Preverbal Analog Mechanism. Psychological Science, 11(2),
    147-152.
    Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers:
    evidence from the SNARC effect. Memory and Cognition, 32(4), 662-673.
    Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that
    the SNARC effect has its functional locus in a response selection stage. Cognitive
    Brain Research, 24(1), 48-56.
    Kornblum, S. H asbroucq., T.; Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility--A model and taxonomy. Psychological Review, 97(2), 253-270.
    Lavidor, M., Brinksman, V., & Gobel, S. M. (2004). Hemispheric asymmetry and the
    mental number line: comparison of double-digit numbers. Neuropsychologia,
    42(14), 1927-1933.
    Mapelli, D., Rusconi, E., & Umilta, C. (2003). The SNARC effect: an instance of the
    Simon effect? Cognition, 88(3), B1-B10.
    Nieder, A., & Miller, E. K. (2004). Analog Numerical Representations in Rhesus
    Monkeys: Evidence for Parallel Processing. Journal of Cognitive Neuroscience,
    16(5), 889-901.
    Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical
    information in the monkey. Proceedings of National Academy of Sciences, 101(19), 7457-7462.
    Nuerk, H., Wood, G, & Willmes, K. (2005). The universal SNARC effect: the
    association between number magnitude and space is amodal. Experimental
    Psychology, 52(3), 187-194.
    Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and Approximate
    Arithmetic in an Amazonian Indigene Group. Science, 306(5695), 499-503.
    Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task. NeuroImage, 14(5), 1013-1026.
    Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983-993.
    Ratinckx, E., & Brysbaert, M. (2002). Interhemispheric stroop-like interference in
    number comparison: evidence for strong interhemispheric integration of semantic
    number information. Neuropsychology, 16(2), 217-229.
    Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Does Action Make the Link Between Number and Space Representation?.
    Visuo-Manual Adaptation Improves Number Bisection in Unilateral Neglect.
    Psychological Science, 15(6), 426-430.
    Rusconi, E., Kwan, B., Giordano, B. L., Umilta, C., & Butterworth, B. (2006). Spatial
    representation of pitch height: the SMARC effect. Cognition, 199(2), 113-129.
    Schwarz, W., & Keus, I. (2004). Moving the eyes along the mental number line:
    comparing SNARC effects with saccadic and manual responses. Perceptual
    Psychophysics, 66(4), 651-664.
    Simon, O., Mangin, JF., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475-487.
    Temple, E., & Posner, M. I. (1998). Brain mechanisms of quantity are similar in
    5-year-old children and adults. Proceedings of National Academy of Sciences, 95(13), 7836-7841.
    Turconi, E., & Seron, X. (2002). Dissociation between order and quantity meanings in a patient with Gerstmann syndrome. Cortex, 38, 911-914.
    Turconi, E., Campbell, J. I. D., & Seron, X. (2006). Numerical order and quantity
    processing in number comparison. Cognition, 98(3), 273-285.
    Turconi, E., Jemel, B., Rossion, B., & Seron, X. (2004). Electrophysiological
    evidence for differential processing of numerical quantity and order in humans.
    Cognitive Brain Research, 21(1), 22-38.
    Vuilleumier, P., Ortigue, S., Brugger, P. (2004). The number space and neglect. Cortex, 40(2), 399-410.
    Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and
    quantity. Trends in Cognitive Sciences, 7(11), 483-488.
    Wynn, K. (1992). Addition and subtraction by human infants. 358(6389), 749-750.
    Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old
    infants. Cognition, 74(1), B1-B11.
    Zorzi, M., Priftis, K., & Umilta, C. (2002). Brain damage Neglect disrupts the mental
    number line. Nature, 417(6885), 138-139.

    QR CODE
    :::