| 研究生: |
林宸宏 Chen-hung Lin |
|---|---|
| 論文名稱: |
淡水河流域中下游生地化狀態之研究: 時間序列觀測及一維模式模擬 Reasearch on biogeochemical condition in Danshuei River midstream and downstream with observation and 1-D advection-diffusion-reaction model simulation |
| 指導教授: |
許少瑜
Shao-yiu Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 生地化狀態研究 、一維模式模擬 、淡水河流域 、時間序列觀測 |
| 外文關鍵詞: | Biogeochemical, 1-D model, Danshuei River, observation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
淡水河為台灣第二大河,集水區域人口總數達800萬人,人為污染造成淡水河有優養化以及季節性的缺氧的情形。本研究為了解淡水河優養化與缺氧的程度,於2013年至2014年期間,量測了淡水河主流的鹽度、溶氧、葉綠素、營養鹽、顆粒碳與氮,並以FEMME (Flexible Environment for Mathematically Modelling the Environment) 模式研究造成優養化以及缺氧的機制。
量測結果得知淡水河主流的中上游部分(離河口39~96公里)水質較佳,溶氧接近飽和狀態(>274 M),氮營養鹽濃度皆低(<82.2 M),水體內的氮營養鹽以硝酸根為主(佔89%)。到了人口較稠密之大台北都會區時(離河口14~39公里),水質漸趨優養化,溶氧逐漸下降(最低達102 M),氮營養鹽濃度逐漸上升(最高達334 M),水體內的氮營養鹽以銨離子為主(佔73%)。而在近出海口時(離河口0~14公里),受海水混合影響,平均溶氧上升至174 M,平均氮營養鹽下降至35.9 M,水體內的氮營養鹽以銨為主(佔65%)。
由FEMME模式計算結果得出在淡水河主流中,最主要移除溶氧之途徑為下游平流輸出(占51.3%),其次是有機物分解(占38%);而溶氧的主要來源為平流輸入(占52.2%),其次是初級生產(占21.5%)。銨的主要來源為支流與汙水設施輸入(占86.6%),其次是有機物分解(占10.1%);銨的移除途徑主要為下游擴散(占73.6%),其次是下游平流輸出(占13.1%),然而淡水河河道內生化作用不顯著。
由環保署的歷史資料分析結果得知,淡水河主流與支流中之溶氧濃度大多呈現逐年上升趨勢,氨離子濃度呈現逐年下降趨勢,說明淡水河水質隨著汙水接管率提高而逐年改善。藉由FEMME模式情境模擬得知,如將浮洲橋附近之點源汙染移至下游注入,即能藉由潮汐擴散的幫助將汙染物移出淡水河,解決浮洲橋區間缺氧的現象。
Abstract
The Danshuei River is the second largest river in Taiwan. The population in its watershed is over 800 million. The high population causes the eutrophication and seasonal hypoxia. In this study, the seasonal variation of salinity, dissolved oxygen, chlorophyll a, nutrients and particulate carbon and nitrogen from Shimen reservoir to Danshui River estuary during 2013 to 2014 were surveyed and analyzed by FEMME (Flexible Environment for Mathematically Modelling the Environment) model in order to understand the magnitude and mechanism of eutrophication and hypoxia.
Based on the observations, the water quality in upstream (39 to 96 kilometers from the estuary) of the Danshuei River is better than that in midstream and downstream. Dissolved oxygen was close to saturation (> 274 M), nitrogen nutrient concentration was low (<82.2 M), and nitrate was the dominant component of DIN(dissolved inorganic nitrogen) (accounting for 89%). The water quality in midstream (14 to 39 kilometers from the estuary) of the Danshuei River where is close to a highly populated area was more eutrophic than that in the upstream of the Danshuei River. From upstream to midstream, the dissolved oxygen decreased (minimum of 102 M), the DIN concentrations gradually increased (maximum 334.2 M), and ammonium became the dominant component of DIN (accounting for 73%). However, the water quality in the downstream (0 to 14 kilometers from the estuary) of the Danshuei River was better than that in the midstream because of the mixing with seawater. From midstream to downstream, the average dissolved oxygen increased to 174 M, average nitrogen nutrients decreased to 35.9 M, and ammonium was still the dominant component of DIN(accounting for 65%).
The FEMME modeling results showed that dispersion is the most important sink source of dissolved oxygen in Danshuei River in downstream (accounting for 51.3%), which is followed by decomposition of organic matter (accounting for 38%). The main source of dissolved oxygen is dispersion inputs (accounting for 52.2%), which is followed by primary production (accounting for 21.5). The main source of ammonia is tributary and sewage input (accounting for 86.6%), followed by the decomposition of organic matter (accounting for 10.1%). The main sink ammonium is downstream diffusion (accounting for 73.6%), followed by dispersion (accounting for 13.1%). The biochemical processes is not an important source or sink of ammonia and dissolved oxygen. .
Historical data from Environmental Protection Agency suggested that the dissolved oxygen concentration rose in the Danshuei River mainstream and all tributaries except for Fu-Zhou bridge in Dahan River. The increasing sewage treatment rate in Taipei may be one of the reasons of the improvement of water quality in Danshuei River. But, the sewage discharge was focused in Fu-Zhou bridge section that deteriorated the water quality at that region. Scenario simulations done by FEMME model show that to move the sewage discharge from Fu-Zhou bridge to Dihua sewage treatment plant in downstream would significantly improve the water quality since the pollutant can be fast diluted by the tidal mixing.
英文參考文獻
Cai, W.-J., M. Dai, Y. Wang, W. Zhai, T. Huang, S. Chen, F. Zhang, Z. Chen, and Z. Wang (2004), The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea, Continental Shelf Research, 24(12), 1301-1319.
Casciotti, K. L., T. W. Trull, D. M. Glover, and D. Davies (2008), Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen, Deep-Sea Research Part Ii-Topical Studies in Oceanography, 55(14-15), 1661-1672.
de Bie, M. J. M., A. Speksnijder, G. A. Kowalchuk, T. Schuurman, G. Zwart, J. R. Stephen, O. E. Diekmann, and H. J. Laanbroek (2001), Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary, Aquatic Microbial Ecology, 23(3), 225-236.
Diaz, R. J., and R. Rosenberg (2008), Spreading dead zones and consequences for marine ecosystems, science, 321(5891), 926-929.
Evans, G., and V. Garcon (1995), One‐dimensional models of water column biogeochemistry: Report of a workshop held in Toulouse, France, November–December.
Evans, G. T., and J. S. Parslow (1985), A model of annual plankton cycles, Biological oceanography, 3(3), 327-347.
Garcia, H. E., and L. I. Gordon (1992), Oxygen solubility in seawater: Better fitting equations, Limnology and oceanography, 37(6), 1307-1312.
Galloway, J. N., H. Levy, and P. S. Kashibhatla (1994), Year 2020 - Consequences of Population-Growth and Development on Deposition of Oxidized Nitrogen, Ambio, 23(2), 120-123.
Galloway, J. N., Z. Dianwu, V. E. Thomson, and L. H. Chang (1996), Nitrogen mobilization in the United States of America and the People's Republic of China, Atmospheric Environment, 30(10-11), 1551-1561.
Gurney, W., and R. M. Nisbet (1998), Ecological dynamics, Oxford University Press, Oxford.
Hofmann, A. F., K. Soetaert, and J. J. Middelburg (2008), Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model, Biogeosciences, 5(4), 981-1006.
Kao, S. J., J. Y. Terence Yang, K. K. Liu, M. Dai, W. C. Chou, H. L. Lin, and H. Ren (2012), Isotope constraints on particulate nitrogen source and dynamics in the upper water column of the oligotrophic South China Sea, Global Biogeochemical Cycles, 26(2).
Lee, T.-Y., Y.-T. Shih, J.-C. Huang, S.-J. Kao, F.-K. Shiah, and K.-K. Liu (2014), Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan, Biogeosciences, 11(19), 5307-5321.
Lehninger, A. (1975), Biochemistry, Worth, New York, 79.
Liu, K.-K., L. Atkinson, R. A. Quiñones, and L. Talaue-McManus (2010), Biogeochemistry of continental margins in a global context, in Carbon and Nutrient Fluxes in Continental Margins, edited, pp. 3-24, Springer.
Liu, K. K., S. J. Kao, L. S. Wen, and K. L. Chen (2007), Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan, Science of the Total Environment, 382(1), 103-120.
Loick, N., J. Dippner, H. N. Doan, I. Liskow, and M. Voss (2007), Pelagic nitrogen dynamics in the Vietnamese upwelling area according to stable nitrogen and carbon isotope data, Deep Sea Research Part I: Oceanographic Research Papers, 54(4), 596-607.
Millero, F. J., and A. Poisson (1981), International one-atmosphere equation of state of seawater, Deep Sea Research Part A. Oceanographic Research Papers, 28(6), 625-629.
Milliman, J. D., and R. H. Meade (1983), World-wide delivery of river sediment to the oceans, The Journal of Geology, 1-21.
Milliman, J. D., and J. P. Syvitski (1992), Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, The Journal of Geology, 525-544.
Monismith, S. G., W. Kimmerer, J. R. Burau, and M. T. Stacey (2002), Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay, Journal of Physical Oceanography, 32(11), 3003-3019.
Morel, F. M., and J. G. Hering (1993), Principles and applications of aquatic chemistry, John Wiley & Sons.
Nash, J., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I—A discussion of principles, Journal of hydrology, 10(3), 282-290.
Pai, S.-C., Y.-J. Tsau, and T.-I. Yang (2001), pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method, Analytica Chimica Acta, 434(2), 209-216.
Park, K., and A. Y.-s. Kuo (1993), A vertical two-dimensional model of estuarine hydrodynamics and water quality, School of Marine Science, Virginia Institute of Marine Science, College of William and Mary.
Rabalais, N. N., R. E. Turner, and W. J. Wiseman Jr (2002), Gulf of Mexico hypoxia, AKA" The dead zone", Annual Review of ecology and Systematics, 235-263.
Redfield, A. C. (1963), The influence of organisms on the composition of sea-water, The sea, 26-77.
Regnier, P., R. Wollast, and C. Steefel (1997), Long-term fluxes of reactive species in macrotidal estuaries: Estimates from a fully transient, multicomponent reaction-transport model, Marine Chemistry, 58(1), 127-145.
Smith, S. V., D. P. Swaney, L. Talaue-Mcmanus, J. D. Bartley, P. T. Sandhei, C. J. McLAUGHLIN, V. C. Dupra, C. J. Crossland, R. W. Buddemeier, and B. A. Maxwell (2003), Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean, BioScience, 53(3), 235-245.
Soetaert, K., and P. M. Herman (1995), Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES), Hydrobiologia, 311(1-3), 247-266.
Soetaert, K., and P. M. J. Herman (1995a), Carbon Flows in the Westerschelde Estuary (the Netherlands) Evaluated by Means of an Ecosystem Model (Moses), Hydrobiologia, 311(1-3), 247-266.
Soetaert, K., and P. M. J. Herman (1995b), Nitrogen Dynamics in the Westerschelde Estuary (Sw Netherlands) Estimated by Means of the Ecosystem Model Moses, Hydrobiologia, 311(1-3), 225-246.
Soetaert, K., P. M. J. Herman, and J. J. Middelburg (1996), A model of early diagenetic processes from the shelf to abyssal depths, Geochimica Et Cosmochimica Acta, 60(6), 1019-1040.
Soetaert, K., V. deClippele, and P. Herman (2002), FEMME, a flexible environment for mathematically modelling the environment, Ecological Modelling, 151(2-3), 177-193.
Stocker, T., D. Qin, G. K. Plattner, M. Tignor, A. S. K. B. J., A. Nauels, and P. M. Midgley (2013), Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the IPCC.Rep.
Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento, and R. Wanninkhof (2007), Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements, Global Biogeochemical Cycles, 21(2).
Thomann, R. V., and J. A. Mueller (1987), Principles of surface water quality modeling and control.
Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. Tilman (1997), Human alteration of the global nitrogen cycle: Sources and consequences, Ecological Applications, 7(3), 737-750.
Weiss, R. (1970), The solubility of nitrogen, oxygen and argon in water and seawater, paper presented at Deep Sea Research and Oceanographic Abstracts, Elsevier.
Welschmeyer, N. A. (1994), Fluorometric Analysis of Chlorophyll-a in the Presence of Chlorophyll-B and Pheopigments, Limnology and Oceanography, 39(8), 1985-1992.
Wen, L. S., K. T. Jiann, and K. K. Liu (2008), Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river, Estuarine Coastal and Shelf Science, 78(4), 694-704.
Wu, J.-T., and T.-L. Chou (2003), Silicate as the limiting nutrient for phytoplankton in a subtropical eutrophic estuary of Taiwan, Estuarine, Coastal and Shelf Science, 58(1), 155-162.
Zeebe, R. E., and D. A. Wolf-Gladrow (2001), CO2 in seawater: equilibrium, kinetics, isotopes, Gulf Professional Publishing.
中文參考文獻
陳樹群 (1984), 河川動態水質數學模式之建立與應用, 台灣大學土木工程學研究所, 碩士論文.
柳文成 (1990), 截流系統對基隆河水質影響之硏究, 國立台灣大學農業工程研究所, 碩士論文.
龔國慶 (1992), 台灣東北海域黑潮鋒面水文化學之硏究, 國立臺灣大學海洋研究所.
康晉展 (1996), 新店溪水質模擬與不確定性分析, 國立台灣大學環境工程研究所, 碩士論文.
柳文成 (1998), 感潮河系之水理與水質動態傳輸模擬硏究, 國立台灣大學農業工程研究所, 博士論文.
洪佐承 (1998), 淡水河感潮段之動態水質模擬, 國立台灣大學土木工程研究所,碩士論文.
連上堯 (1988), 枯水期基隆河水理與水質模式之研究, 國立台灣大學農業工程研究所, 碩士論文.
陳筱華 (1989), 河川污染特性及水質數學模式之探討: 以基隆河為例, 國立台灣大學環境工程研究所, 碩士論文.
孫毓璋, and 彭竟凱 (2001), 大漢溪流域水體環境中重金屬及營養鹽分佈的探討, 台灣海洋學刊.
鍾文祥 (1995), 基隆河之水質模擬與風險分析, 國立台灣大學土木工程研究所,碩士論文.
白書稹, 郭廷瑜, 鍾仕偉, and蘇宗德. (1998), 疊氮修正希巴辣光度測氧法及其在環境觀測上的應用, 化學 (中國化學學會. 台北), 56(3), 173-185.
方天熹 (2001), 溶解態鋁在淡水河河口及近岸海域之分布, 台灣海洋學刊.
彭明德 (2001), 淡水河之硝化現象模擬, 國立台灣大學土木工程研究所,碩士論文.
謝蕙蓮 (2001), 由底棲群聚看淡水河河口生態品質, 台灣海洋學刊, 39, 121-133.
黃蔚人 (2003), 淡水河系中上游河水中氮物種之時空變化, 國立臺灣大學海洋研究所, 碩士論文.
黃曉盈 (2003), 網狀感潮河系數値模式之發展, 國立臺灣大學生物環境系統工程學研究所, 碩士論文.
劉欣宜 (2004), 水質模式應用於魚類存活之河川基流量估算, 國立臺灣大學生物環境系統工程學研究所, 碩士論文.
李俊賢 (2006), 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物, 中央大學水文與海洋科學研究所, 碩士論文..
莊竣皓 (2007), 淡水河流域鹼度, 酸鹼值與主要離子 之時空變化, 中央大學水文與海洋科學研究所, 碩士論文.
台北市政府 (2010) 年報統計分析. 汙水下水道用戶接管http://pwd.gov.taipei/ct.asp?xItem=1020531&ctNode=23427&mp=106001
鄭峻翔 (2010), 淡水河口之顆粒性有機碳, 氮同位素及溶解性無機氮同位素之研究,碩士論文.
藍承佑 (2012), 淡水河流域營養鹽濃度及溶氧之變化與一維數值模擬,碩士論文.
尹志强 (2012), 珠江口上游水体缺氧的形成机理: 物理–生物地球化学耦合模式研究, 廈門大學近海海洋環境國家重點實驗室, 碩士論文.
吳栢兆 (2014), 河口與近海環境懸浮顆粒物質之探討: 顆粒性有機物之來源及懸浮顆粒之重量法測定, 碩士論文.