| 研究生: |
鄭永順 Yung-Shun Cheng |
|---|---|
| 論文名稱: |
輪型行動機器人之自動航行與路徑規劃 Automatic Navigation and Path Planning of a Wheeled Mobile Robot |
| 指導教授: |
鍾鴻源
Hung-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 模糊控制 、輪型行動機器人 、模擬退火法 、路徑規劃 |
| 外文關鍵詞: | Fuzzy control, Wheeled mobile robot, Simulated Annealing, Path planning |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用階層式模糊邏輯控制器(Hierarchical Fuzzy Logic Controller,HFLC)設計輪型行動機器人(Wheeled Mobile Robot,WMR)的控制器,並配合模擬退火法(Simulated Annealing,SA)將此控制器之相關參數調整到一個較佳的狀態,來對WMR作運動控制,使WMR
能從任意初始位置及方位角完成定位控制與軌道追蹤控制。
另外本論文也提出兩種不同狀況之避障路徑系統,第一種為當環境中的障礙物為特定形狀時,利用模糊理論即時決定一個能閃避障礙物的最佳轉向角度。第二種為當環境中的障礙物為任意形狀時,便結合子目標選擇法及曲線插補法設計一路徑規劃法,求得一個能避免與障礙物碰撞之最佳路徑,使WMR不但可以順利的避過障礙物,且能以最短路徑到達目標位置。
在實作驗證部分,本論文利用影像處理技術擷取輪型行動機器人與障礙物之狀態,並以Borland C++ Builder為平台撰寫控制器及避障路徑規劃等演算法,也利用單晶片Microchip PIC16F877進行馬達轉速控制,而整個輪型機器人之操控及狀況判斷與處理均建構在視窗環境下。最後透過定位控制、軌道追蹤和閃避障礙物等實驗來驗證本論文中各種方法之有效性。
This thesis uses the hierarchical logic fuzzy controller (HFLC) to design controllers for a wheeled mobile robot (WMR). Partial parameters of the proposed controllers are fine-tuned by simulated annealing (SA) for better performance. The proposed controllers are applied to the motion control of the WMR from any arbitrary position and direction to achieve the position control and the trajectory tracking control.
There are also two path-planning methods for obstacle avoidance has been proposed in this thesis. The first one is based on the fuzzy theory to decide an optimal steering angle for collision avoidance of the WMR real-time if the shapes of the obstacles in the environment are all particular. When the shapes of the obstacles in the environment are arbitrary, we combine the subgoal selection method and the spline interpolation method to design a path-planning method to obtain an optimal path for obstacle avoidance and reach the target position.
In the part of the implementation, we use the technology of the image processing to acquire the movements of the WMR. In order to operate the WMR, the control algorithm and the path-planning method are designed with Borland C++ Builder and the motor speed of the two wheels is controlled by microchip PIC16F877. All of the operations of the WMR are established in the circumstance of the windows. Finally, the experimental results are given to demonstrate the effectiveness of the proposed methods in this thesis.
[1] A. Fujimori, T. Murakoshi and Y. Ogawa, “Navigation and path-planning of mobile robots with real-time map-building,” Industrial Technology, 2002 IEEE ICIT ''02, 2002 IEEE International Conference on, Vol. 1, pp. 7-12, Dec. 2002.
[2] B. Lakehal, T. Amirat and J. Pontnau, “Fuzzy steering control of a mobile robot,” Industrial Automation and Control:Emerging Technologies 1995 International IEEE/IAS Conference, pp. 383-386, May 1995.
[3] C. C. Wong, M. F. Chou, C. P. Hwang, C. H. Tsai and S. R. Shyu, “A method for obstacle avoidance and shooting action of the robot soccer,” Robotics and Automation, 2001 Proceedings, 2001 ICRA IEEE International Conference on, Vol. 4, pp. 3778-3782, May 2001.
[4] D. H. Kim and J. H. Oh, “Tracking control of a two-wheeled mobile robot using input-output linearization,” Control Engineering Practive, Vol. 7, No. 3, pp. 369-373, 1999.
[5] D. K. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, Vol. 12, No. 4, pp. 637-644, 2004.
[6] E. M. Petriu, “Automatic guided vehicle with absolute encoded guide-path,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 4, pp. 562-565, 1991.
[7] E. P. Dadios and O. A. Maravillas Jr., “Fuzzy logic controller for micro-robot soccer game,” Industrial Electronics Society, 2001 IECON ''01, The 27th Annual Conference of the IEEE, Vol. 3, pp. 2154-2159, Nov. 2001.
[8] G. Springer, P. Hannah, R. J. Stonier, S. Smith and P. Wolfs, “Simple strategies for collision-avoidance in robot soccer,” Robotics and Autonomous Systems, Vol. 21, pp. 191-196, 1997.
[9] G. Yasuda and H. Takai, “Sensor-based path planning and intelligent steering control of nonholonomic mobile robots,” Industrial Electronics Society, 2001 IECON ''01, The 27th Annual Conference of the IEEE, Vol. 1, pp. 317-322, Nov. 2001.
[10] H. Eren, C. F. Chun and J. Evans, “Implementation of the spline method for mobile robot path control,” Instrumentation and Measurement Technology Conference, 1999 IMTC/99 Proceedings of the 16th, IEEE, Vol. 2, pp. 739-744, May 1999.
[11] H. Makela and K. Koskinen, “Navigation of outdoor mobile robots using dead reckoning and visually detected landmarks,” IEEE Fifth International Conference on Advanced Robotics, Robots in Unstructured Environments, Vol. 2, pp. 1051-1056, June 1991.
[12] H. Spath, One Dimensional Spline Interpolation Algorithms, A. K. Peters, 1995.
[13] H. Spath, Two Dimensional Spline Interpolation Algorithms, A. K. Peters, 1995.
[14] J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, pp. 578-587, 1999.
[15] L. X. Wang, “Universal approximation by hierarchical fuzzy systems,” Fuzzy Sets and Systems, Vol. 93, No. 2, pp. 223-230, 1998.
[16] M. B. Montaner and A. R. Serrano, “Fuzzy knowledge-based controller design for autonomous robot navigation,” Expert Systems with Applications, Vol. 14, pp. 179-186, 1998.
[17] M. L. Lee, H. Y. Chung and F. M. Yu, “Modeling of hierarchical fuzzy systems,” Fuzzy Sets and Systems, Vol. 138, No. 2, pp. 343-361, 2003.
[18] M. J. Jung, H. S. Kim, H. S. Shim and J. H. Kim, “Fuzzy rule extraction for shooting action controller of soccer robot,” IEEE International Fuzzy Systems Conference Proceedings, Aug. 1999.
[19] M. S. Lee, M. J. Jung and J. H. Kim, “Evolutionary programming-based fuzzy logic path planner and follower for mobile robots,” Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, Vol. 1, pp. 139-144, July 2000.
[20] M. W. Han and T. Kolejka, “Artificial neural networks for control of autonomous mobile robots,” Intelligent Manufacturing System, pp. 157-162, 1994.
[21] J. E. N. Rico, A. Ismael, G. O. Juan and E. F. Camacho, “Mobile robot path tracking using a robust PID controller,” Control Engineering Practive, Vol. 9, No. 11, pp. 1209-1214, 2001.
[22] P. Kampmann and G. Schmidt, “Indoor navigation of mobile robots by use of learned maps,” Information Processing in Autonomous Mobile Robots, Proceedings of the International Workshop, pp. 151-169, 1991.
[23] R. Bellman, Adaptive Control Processes, Princeton University Press, Princeton, 1966.
[24] R. Chatterjee and F. Matsuno, “Use of single side reflex for automomous navigation of mobile robots in unknown environments,” Robotics and Autonomous Systems, Vol. 35, pp. 77-96, 2001.
[25] S. G. Kong and B. Kosko, “Adaptive fuzzy systems for backing up a truck-and-trailer,” IEEE Transactions on Neural Networks, Vol. 3, No. 2, pp. 211-223, 1992.
[26] S. K. Tso and Y. H. Fung, “Intelligent fuzzy switching of control strategies in path control for autonomous vehicles,” IEEE International Conference on Robotics and Automation, Vol.1, pp. 281-286, May 1995.
[27] T. H. Lee, H. K. Lam, F. H. F. Leung and P .K. S. Tam “A practical fuzzy logic controller for the path tracking of wheeled mobile robots,” IEEE Control Systems Magazine, Vol. 23, No. 2, pp. 60-65, 2003.
[28] T. H. S. Li, C. A. Lai and Y. J. Guo, “Design of fuzzy field control for a one-on-one robot soccer system,” IEEE Industrial Electronics Society, 2002 28th Annual Conference of the, Vol. 4, pp. 2605-2610, Nov. 2002.
[29] T. H. S. Li, R. C. Liu and I. F. Liu, “Fuzzy shooting control of car-like soccer robot,” Proceedings of IEEE Region 10 International Conference on, Vol. 1, pp. 447-452, Aug. 2001.
[30] W. J. Palm III, Introduction to MATLAB 6 for Engineers, McGraw-Hill, 2001.
[31] W. G. Han, S. M. Baek and T. Y. Kuc, “Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots,” 1997 IEEE International Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 2747-2751, Oct. 1997.
[32] Z. Fan, Y. Koren and D. Wehe, “Tracked mobile robot control: hybrid approach,” Control Engineering Practice, Vol. 3, No. 3, pp.329-336, 1995.
[33] Z. P. Jiang and N. Henk, “Tracking control of mobile robots: a case study in backstepping,” Automatica, Vol. 33, No. 7, pp. 1393-1399, 1997,
[34] PIC16F87X Data Sheet, Microchip, 1999.
[35] 王文俊, 認識Fuzzy, 全華科技, 2001年.
[36] 李明霖, 階層式模糊控制及其在倒三角體系統之應用, 國立中央大學, 電機工程研究所, 碩士論文, 2000年.
[37] 吳駖, MATLAB 6.X與基礎自動控制, 松崗, 2002年.
[38] 周佳彥, 運用雙影像對應求取3D座標資訊-模擬退火法之應用, 朝陽科技大學, 工業工程與管理研究所, 碩士論文, 2003年.
[39] 林傳生, MATLAB之使用與應用, 儒林, 2002年.
[40] 周鵬程, 遺傳演算法原理與應用-活用MATLAB, 全華科技, 2001年.
[41] 洪國勝, 江國軍, 龍國忠, 洪月裡, C++ Builder 6程式設計快樂上手, 旗標, 2004年.
[42] 范逸之, 江文賢, 陳立元, C++ Builder與RS-232串列通訊控制, 文魁, 2002年.
[43] 陳永平, 可變結構控制設計, 全華科技, 2002年.
[44] 張智星, MATLAB程式設計與應用, 清蔚科技, 2000年.
[45] 黃文星, 使用模擬退火法於腦部磁振造影影像分割之研究, 大葉大學, 工業工程研究所, 碩士論文, 2003年.
[46] 鈦思科技, 視覺化建模環境 SIMULINK入門與進階, 鈦思科技, 2001年.
[47] 黃肆海, 混合型模擬退火法於結構工程之應用, 國立成功大學, 航空太空工程研究所, 碩士論文, 2003年.
[48] 蒙以正, MATLAB 5專業設計技巧, 碁峰, 1998年.
[49] 趙春棠, PIC單晶片學習秘笈, 全威, 2001年.
[50] 繆紹剛, 數位影像處理-活用MATLAB, 全華科技, 1999年.
[51] 蘇木春, 張孝德, 機器學習:類神經網路、模糊系統以及基因演算法則, 全華科技, 2003年.