| 研究生: |
翁溫駿 WENG,WEN-JUN |
|---|---|
| 論文名稱: |
TAPAS演算法於依時性整合模型之應用 |
| 指導教授: | 陳惠國 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 依時性交通量指派 、MEUE 、唯一路徑解流量 、超級路網 、TAPAS演算法 |
| 外文關鍵詞: | time-dependent traffic assignment, MEUE, unique route flow solution, super network, TAPAS algorithm |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運輸需求預測是運輸規劃的核心模組,也是智慧型運輸系統中先進運輸資訊子系統的重要依據。伴隨著科技的進步與演算法效率的提升,運輸需求預測也逐漸從長期性的規劃性質朝向短期性的操作性質發展。為了因應此發展趨勢,運輸需求預測必須克服過去存在的三大課題,即:循序性運輸需求預測程序中界面的不一致性、演算法效率不符合即時性要求、未提供合理的路徑導引資訊。由於運輸需求整合模型可克服介面不一致性、導入時間維度的依時性的模型可呈現精細的運輸需求預測結果、而成對替選區段交通量指派(traffic assignment by paired alternative segments, TAPAS)演算法又具有快速精確的演算效率以及提供合理的唯一路徑解資訊,因此,本論文嘗試將TAPAS演算法應用於依時性單限旅次分佈交通量指派整合模型,依序提出依時性時空路段成本函數、整合模型數學架構、超級路網概念,發展延伸性的交通量指派演算法,然後以雙三角形小路網驗證其正確性。並且通過參數驗證,找出適用於內湖路網的依時性成本函數參數,並提出可能的通用參數a值及β值較大時,較符合路側VD結果。文末並提出研究結論與未來改善建議。
Transportation demand forecasting is a core module in transportation planning and an important basis for advanced transportation information subsystems in intelligent transportation systems. With the advancement of technology and improvement in algorithm efficiency, transportation demand forecasting has gradually evolved from long-term planning to short-term operational applications. To address this development trend, transportation demand forecasting must overcome three major challenges that existed in the past: inconsistency in the interfaces of sequential transportation demand forecasting procedures, algorithm efficiency not meeting real-time requirements, and lack of provision of reasonable path guidance information.
Since the integrated transportation demand model can overcome interface inconsistency, time-dependent models incorporating the time dimension can present detailed transportation demand forecasting results, and the Traffic Assignment by Paired Alternative Segments (TAPAS) algorithm has fast and accurate computational efficiency while providing reasonable unique path solution information, this thesis attempts to apply the TAPAS algorithm to a time-dependent integrated single-constrained trip distribution and traffic assignment model.
The study sequentially proposes a time-dependent spatiotemporal link cost function, the mathematical framework of the integrated model, and the super network concept. It develops an extensible traffic assignment algorithm and then verifies its correctness using a small double-triangle network. Through parameter validation, it identifies suitable time-dependent cost function parameters for the Neihu road network and suggests that when the possible universal parameter a value and β value are larger, the results are more consistent with roadside vehicle detector (VD) data.
The paper concludes with research findings and suggestions for future improvements.
1. 薛哲夫(1996)。明確型動態旅運選擇模型之研究。國立中央大學土木工程系,碩士論文,中壢。
2. 張佳偉(1997)。路徑變數產生法求解動態交通量指派模型之效率比較。國立中央大學土木工程系,碩士論文,中壢。
3. 周鄭義(1999)。動態號誌時制最佳化之研究-雙層規劃模型之應用。國立中央大學土木工程系,碩士論文,中壢。
4. 陳惠國(2023a)。改良式需求預測程序及整合模型。運輸規劃-基礎與進階,五南。
5. 陳惠國(2023b)。依時性與非對稱用路人均衡問題。運輸規劃-基礎與進階,五南。
6. 陳惠國(2023c)。網路設計與雙層規劃模型-交通號誌時制設計。運輸規劃-基礎與進階,五南。
7. 顏郁航(2014)。雙限旅次分佈與交通量指派整合問題之研究-延伸性TAPAS演算法之應用。國立中央大學土木工程系,碩士論文,中壢。
8. Bar-Gera, H., & Boyce, D. (1999). Route flow entropy maximization in origin-based traffic assignment. In 14th International Symposium on Transportation and Traffic Theory Transportation Research Institute.
9. Bar-Gera, H. (2002). Origin-based algorithm for the traffic assignment problem. Transportation Science, 36(4), 398-417.
10. Bar-Gera, H. (2006). Primal method for determining the most likely route flows in large road networks. Transportation Science, 40(3), 269-286.
11. Bar-Gera, H. (2010). Traffic assignment by paired alternative segments. Transportation Research Part B: Methodological, 44(8-9), 1022-1046.
12. Beckmann, M., McGuire, C. B., & Winsten, C. B. (1956). Studies in the Economics of Transportation, 226, Yale University Press.
13. Chen, H. K., & Hsueh C.F. (1996). A Dynamic User-Optimal Route Choice Problem Using a Link-Based Variational Inequality Formulation, Proceedings of the 5th World Congress of the RSAI Conference, Japan.
14. Chen, H. K., & Hsueh, C. F. (1998). A model and an algorithm for the dynamic user-optimal route choice problem. Transportation Research Part B: Methodological, 32(3), 219-234.
15. Chen, H. K. (1999). Dynamic Travel Choice Models : A Variational Inequality Approach, Springer-Verlag, Springer-Verlag, Berlin .
16. Chen, H. K. (2011). Supernetworks for combined travel choice models. The Open Transportation Journal, 5(1).
17. Chen H. K. (2017). A heuristic for the doubly constrained entropy distribution/ assignment problem, Netw Spat Econ, 17, 107–128.
18. Dial, R. B. (2006). A path-based user-equilibrium traffic assignment algorithm that obviates path storage and enumeration. Transportation Research Part B: Methodological, 40(10), 917-936.
19. Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2), 95-110.
20. Friesz, T. L., Bernstein, D., Smith, T. E., Tobin, R. L., & Wie, B. W. (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Operations research, 41(1), 179-191.
21. Jayakrishnan, R., Tsai, W. T., Prashker, J. N., & Rajadhyaksha, S. (1994). A faster path-based algorithm for traffic assignment. UC Berkeley: University of California Transportation Center.
22. Jie, Y. (2015). Understanding the unique route flow solution of traffic assignment modeling with entropy assumption. Master's Thesis, National Central University, Taiwan.
23. Ran, B., Hall, R. W., & Boyce, D. E. (1996). A link-based variational inequality model for dynamic departure time/route choice. Transportation Research Part B: Methodological, 30(1), 31-46.
24. Rossi, T. F., McNeil, S., & Hendrickson, C. (1989). Entropy model for consistent impact-fee assessment. Journal of urban planning and development, 115(2), 51-63.
25. Smith, M. J. (1993). A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity- constrained road networks. Transportation Research, 27(1), 49-63.
26. Smith, M. J. (1979). The existence, uniqueness and stability of traffic equilibria. Transportation Research Part B: Methodological, 13(4), 295-304.
27. Xie, J., & Xie, C. (2014). An improved TAPAS algorithm for the traffic assignment problem. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 2336-2341.
28. Yen, C. (2022). Adaptive Time-Dependent Traffic Signal Control Scheme with Variable Cycle Length Based on Signaling data. Master's Thesis, National Central University, Taiwan.