| 研究生: |
游建豪 Jian-Hao You |
|---|---|
| 論文名稱: |
可作為染料敏化太陽能電池之苯併呋咱衍生物 Benzofurazan-based Derivatives for Dye-Sensitized Solar Cells |
| 指導教授: | 林建村 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 染料 、太陽能電池 、苯併呋咱 |
| 外文關鍵詞: | Benzofurazan, D-A-A, CDCA |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們成功合成以 dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c]furazan (DTBF)為架橋,連接作為電子予體之苯胺,及2-cyanoacrylic acid作為電子受體兼錨基的新穎 D−A−A光敏化染料(JH-1至JH-5)。化合物合成的主要反應包括 Kumada Coupling、Hartwig-Buchwald coupling、Stille coupling、Vilsmeier-Haack reaction、Knoevenagel condensation。
除了探討化合物之光物理與電化學性質外,也進行理論計算,以及製成染料敏化太陽能電池,進行測試。這些化合物都展現電荷轉移特性,有助受光後之電子注入TiO2。由於染料在350−500 nm有不錯的吸收度,DTBF屬較大面積之平面結構,引入共軛架橋中之龐大烷基可能無法完全抑制分子之堆疊;因此,我們嘗試加入CDCA以抑制分子之堆疊。CDCA之加入確實提高了元件之效率;其中 JH-5元件有著卓越的光電轉換效率,高達 7.34%,可達標準元件 N719的 97%。
New D-A-A type sensitizers (JH dyes), comprised of arylamine as the electron donor, dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c]furazan (DTBF) containing conjugated segment as the conjugated bridge, and 2-cyanoacrylic acid as both the acceptor and anchor, have been synthesized. Kumada coupling, Hartwig-Buchwald coupling, Stille coupling, Vilsmeier-Haack reaction and Knoevenagel condensation reactions are used for the dyes synthese.
The physical properties of the new dyes were characterized by photophysical and electrochemical measurements, and theoretical computation. Dye-sensitized solar cells were also fabricated using new developed dyes as the sensitizers. The charge transfer character in the compounds is beneficial to the electron injection into TiO2 after photoexcitation. With good absorption in the spectral range from 350 to 500 nm, due to the presence of a large and flat DTBF entity in the spacer, the bulky alkyl chains in the dye molecule can not effectively suppress dye aggregation. Therefore, CDCA was added as the co-adsorbent to suppression dye aggregation. Addition of CDCA indeed improves the cell performance. DSSC of JH-5 has best efficiency of 7.34%, reaching 97% of the standard cell N719.
1. Nelson, J. The Physics of Solar Cells. London: Imperial College Press, 2003.
2. 陳頤承, 郭昭顯, 陳俊亨, “太陽電池量測技術“ 工業材料雜誌258期, 2008.
3. Kallmans, H.; Pope, M. J. Chem. Phys., 1958, 30, 585.
4. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl.
Phys.. 1954, 25, 676.
5. 馮垛生, “太陽能發電原理與應用” 五南圖書出版股份有限公司, 2009.
6. 郭明村, “薄膜太陽能電池發展近況” 工業材料雜誌, 2003, 203, 138.
7. 萬海保, 曹立新, 王麗穎, 曾廣賦, 席時權, “染料敏化的 TiO2奈米晶多孔膜的性質及光電轉移” 化學通報, 1999, 6.
8. Tsubinur, H.; Mastsumura, M.; Nomura, Y.; Amamiya, T. Nature, 1976, 261, 402.
9. Regan, B. O.; Grätzel, M. Nature, 1991, 343, 737.
10. Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc., 2005, 127, 16835.
11. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science, 2011, 334, 629.
12. Zeng, W. D.; Cao, Y. M.; Bai, Y.; Wang, Y. H.; Shi, Y. S.; Wang , P. Chem. Mater., 2010, 22, 1915.
13. Ferber, J.; Stangl, R; Luther, J. Sol. Energy Mater. Sol. Cells, 1998, 53, 29.
14. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo L.; Pettersson, H. Chem. Rev., 2010, 110, 6595.
15. Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem., Int. Ed., 2009, 48, 2474.
16. Ning, Z. J.; Tian, H. Chem. Commun., 2009, 5483.
17. Ning, Z. J.; Fu, Y.; Tian, H. Energy Environ. Sci., 2010, 3, 1170.
18. Li, C.; Wonneberger, H. Adv. Mater., 2012, 24, 613.
19. Lee, D. H.; Lee, M. J.; Song, H. M.; Song, B. J.; Seo, K. D.; Pastore, M.; Anselmi, C.; Fantacci, S.; De Angelis, F.; Nazeeruddin, M. K.; Grätzel, M.; Kim, H. K. Dyes Pigm., 2011, 91, 192.
20. Kim, J.; Choi, H.; Lee, J.; Kang, M.; Song, K.; Kang, S. O.; and Ko, J. J. Mater. Chem., 2008, 18, 5223.
21. Tang, Z. M.; Lei, T.; Jiang, K. J.; Song, Y. L.; Pei, J. Chem.–Asian J., 2010, 5, 1911.
22. Kim, S.; Lim, H.; Kim, K.; Kim, C.; Kang, T. Y.; Ko, M. J.; Park, N. G. IEEE J. Sel. Top. Quantum Electron., 2010, 16, 1627.
23. Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher, J.; Moser, J.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M.; Bäuerle, P. Adv. Funct. Mater., 2012, 22, 1291.
24. Wu, Y. Z.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. H. Energy Environ. Sci., 2012, 5, 8261.
25. Mao, J. Y.; Guo, F. L.; Ying, W. J.; Wu, W. J.; Li J.; Hua, J. L. Chem.–Asian J., 2012, 7, 982.
26. Chang, D. W.; Lee, H. J.; Kim, J. H.; Park, S. Y.; Park, S. M.; Dai, L.; Baek, J. B. Org. Lett., 2011, 13, 3880–3883
.
27. Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y. C.; Ho, K. C. Org. Lett., 2005, 7, 1899.
28. Chou, H.-H.; Chen, Y.-C.; Huang, H.-J.; Lee, T.-H.; Lin, J. T.; Tsai, C.; Chen, K. J. Mater. Chem., 2012, 22, 10929.
29. Cai, S.; Hu, X.; Zhang, Z.; Su, J.; Li, X.; Islam, A.; Han , L.; Tian, H. J. Mater. Chem. A, 2013, 1, 4763.
30. Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun , L. Chem. Commun., 2007, 36, 3741.
31. Chen, C. –H.; Hsu, Y. –C.; Chou, H. –H.; Justin Thomas, K. R.; Lin, J. T.; Hsu , C. –P. Chem. Eur. J., 2010, 16, 3184.
32. Cai, S.; Tian, G.; Li, X.; Su , J.; Tian, H. J. Mater. Chem. A, 2013, 1, 11295.
33. (a) Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun., 1972, 144. (b) Tamao, K; Sumitani, K; Kumada, M. J. Am. Chem. Soc., 1972, 94, 4374.
34. (a) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc., 1994, 116, 5969. (b) Yang, B. H.; Buchwald, S. L. J. Org. Chem., 1999, 576, 125.
35. Milstein, D.; Stille, K. J. J. Am. Chem. Soc., 1978, 100, 3636.
36. Meth–Cohn, O; Stanforth, S. P. Comp. Org. Synth., 1991, 2, 777.
37. (a) Yang, S.-Y.; Yen, Y.-S.; Hsu, C.-Y.; Chou, H.-H.; Lin, J. T. Org. Lett., 2010, 12, 16. (b) Li, S.-L.; Jiang, K.-J.; Shao, K.-F.; Yang, L.-M. Chem. Commun., 2006, 2792.
38. (a) Yen, Y.-S.; Lin, T.-Y.; Hsu, C.-Y.; Chen, Y.-C.; Chou, H.-H.; Tsai, C.; Lin J. T. Org. Electron. 2013, 14, 2546. (b) He, J.; Kuo, F.; Li, X.; Wu, W.; Yang, J.; Hua, J. Chem. Eur. J. 2012, 18, 7903.