| 研究生: |
江富萱 Fu-Xuan Jiang |
|---|---|
| 論文名稱: |
多軸向椎弓根螺釘於不同設計參數下之生物力學影響 |
| 指導教授: | 黃俊仁 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 多軸向椎弓根螺釘 、有限元素法 、勁度 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊椎手術主要可分為骨融合術和非骨融合術,而無論是何種方式,均必須利用椎弓根螺釘提高脊椎穩定度。而椎弓根螺釘可分為單軸向和多軸向兩種,多軸向椎弓根螺釘因為其螺釘頭部的角度可以自由改變,有效改善單軸向椎弓根螺釘在安裝上時的困難,但其球結構可能會產生滑脫的缺點,也成為多數人疑慮的一項議題。
本文分為兩大部分,第一部分利用軟體SolidWorks根據規範ASTM F1798建立出多軸向椎弓根螺釘模型,匯入軟體ANSYS進行有限元素分析,接著利用相同方法進行實驗,驗證有限元素分析之正確性。第二部分同樣利用軟體SolidWorks根據規範ASTM F1717建立出多軸向椎弓根螺釘穩定系統當作基準模型,並根據臨床應用上可能會產生的參數,繪製出四種不同參數模型,分別為不同螺釘外徑、不同螺釘鎖入深度、不同椎骨間角度、不同螺釘與螺帽間角度,並將不同參數模型均匯入軟體ANSYS,模擬前彎、後仰、側彎、扭轉四種不同運動方式之生物力學行為。
結果發現多軸向螺釘之勁度和施加於螺帽上的扭矩無關,而能承受的最大負載和施加的扭矩成正比。另外,不同螺釘外徑、不同螺釘鎖入深度、不同椎骨間角度均會改變模型的勁度,而不同螺釘與螺帽間角度對勁度無造成明顯改變。
The spinal surgery can be distinguished to fusion surgery and non-fusion surgery. Both of them will need pedicle screws to improve spinal stability no matter which surgery is performed. There are two different types of pedicle screws, monoaxial and polyaxial screws. Because the head of polyaxial pedicle screw can freely change its angle, it effectively reduces the difficulty when assembling the monoaxial pedicle screw. However, there are concerns about the polyaxial pedicle screw because the structure of ball-in-cup may cause slippage.
There are two parts in this study. First, the software SolidWorks and ANSYS were adopted to establish and analyze the standard ASTM F1798’s model. Experiments were performed to verify the correctness of the present finite element analysis. Second, a stabilization system was established to be a reference model by following the standard ASTM F1717. In addition, four different models were established based on the possible parameters in the clinical application, which were screw outer diameter, screw insertion depth, vertebrae angle, and angle between screw and nut. These models were imported to the software ANSYS to simulate the biomechanical behaviors in compression, flexion, lateral bending and torsion.
The results showed that the stiffness of polyaxial pedicle screw was independent of the torque which was applied to the nut. The maximum load that polyaxial pedicle screw can afford was proportional to the torque which was applied to the nut. The stiffness of models were affected by different screw outer diameter, screw insertion depth and vertebrae angle. However, different angles between screw and nut did not significantly affect the stiffness of models.
[1] Netter F. H., Atlas of human anatomy, Rittenhouse Book Distributors Inc., 5nd edition, pp. 107-108, 2011.
[2] 網路資料︰Notes on Anatomy and Physiology。2010,取自
http://ittcs.wordpress.com/2010/06/01/anatomy-and-physiology-the-intervertebral-discs/
[3] 網路資料︰台灣脊椎中心。取自
http://taiwanspinecenter.com.tw/web/00_anatomy/01anatomy_11.htm
[4] 網路資料:SpineView,取自
http://www.spineview.com/degenerative_disc.php
[5] 網路資料︰鮑卓倫常見脊椎疾病,取自
http://ispinecare.com/index.html
[6] 網路資料︰Spinal Stenosis Overview,取自
http://www.spinepainbegone.com/spinal-stenosis.aspx
[7] 網路資料︰脊椎損傷醫訊,取自
http://web.it.nctu.edu.tw/~hcsci/hospital/other/hivd.htm
[8] 網路資料︰華人脊椎線上,取自
http://www.spine-online.com.tw/article.php?act=view&no=46
[9] 張湧翔,「可撐式椎籠於骨融合手術初期之生物力學影響」,國立中央大學,碩士論文,民國102年7 月。
[10] C. K. Lee, “Accelerated degeneration of the segment adjacent to a lumbar fusion,” Spine, Vol. 13, No. 3, pp. 375-377, 1988.
[11] M. D. Rahm, B. B. Hall, “Adjacent-segment degeneration after lumbar fusion with instrumentation: A retrospective study,” Journal of Spinal Disorders, Vol. 9, No. 5, pp. 392-400, 1996.
[12] 網路資料︰privelop,取自
http://www.privelop.ag/it/prodotti/polymore/the-privelop-pedicle-screw-system-polymore6.html
[13] 蘇崇瑋,「微創椎弓根螺釘補強之最佳化分析」,國立中央大學,碩士論文,民國101年7月。
[14] D. Pienkowski, G. C. Stephens, T. M. Doers, D. M. Hamilton, “Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants,” Spine, Vol. 23, No. 7, pp. 782-788, 1998.
[15] J. C. Dick, C. A. Bourgeault, “Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants,” Spine, Vol. 26, No. 15, pp. 1668-1672, 2001.
[16] ASTM standard F1798, “Standard test method for evaluating the static and fatigue properties of interconnection mechanisms and subassemblies used in spinal arthrodesis implants,” ASTM International, West Conshohocken, PA, 2015.
[17] ASTM standard F1717, “Standard test methods for spinal implant constructs in a vertebrectomy model,” ASTM International, West Conshohocken, PA, 2014.
[18] 王栢村,“電腦輔助工程分析之實務與應用”,全華科技圖書股份有限公司,4-20至4-22頁,2001。
[19] H. Matsuzaki, Y. Tokuhashi, F. Matsumoto, M. Hoshino, T. Kiuchi, S. Toriyama, “Problems and solutions of pedicle screw plate fixation of lumbar spine,” Spine, Vol. 15, No. 11, pp. 1159-1165, 1990.
[20] S. I. Esses, B. L. Sachs, V. Dreyzin, T. Zdeblick, “Complications associated with the technique of pedicle screw fixation: A selected survey of ABS members,” Spine, Vol. 18, No. 15, pp.2231-2239, 1993.
[21] K. Okuyama, E. Abe, T. Suzuki, Y. Tamura, M. Chiba, K. Sato, “Can insertional torque predict screw loosening and related failures? An in vivo study of pedicle screw fixation augmenting posterior lumbar interbody fusion,” Spine, Vol. 25, No. 7, pp. 858-864, 2000.
[22] T. O. McKinley, R. F. McLain, S. A. Yerby, N. A. Sharkey, N. Sarigul-Klijn, T. S. Smith, “Characteristics of pedicle screw loading: Effect of surgical technique on intravertebral and intrapedicular bending moments,” Spine, Vol. 24, No. 1, pp. 18-25, 1999.
[23] G. R. Fogel, C. A. Reitman, W. Liu, S. I. Esses, “Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure,” Spine, Vol. 28, No. 5, pp. 470-473, 2003.
[24] S. R. Schroerlucke, N. Steklov, G. M. Mundis, J. F. Marino, B. A. Akbarnia, R. K. Eastlack, “How does a novel monoplanar pedicle screw perform biomechanically relative to monoaxial and polyaxial designs?” Clinical Orthopaedics and Related Research, Vol. 472, No. 9, pp. 2826-2832, 2014.
[25] E. Çetin, M. Özkaya, Ü. Ö. Güler, E. AcaroLlu, T. Demir, “Evaluation of the effect of fixation angle between polyaxial pedicle screw head and rod on the failure of screw-rod connection,” Applied Bionics and Biomechanics, Vol. 2015, No. 150649, 2015.
[26] C. A. Lill, U. Schlegel, D. Wahl, E. Schneider, “Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180°,” Journal of Spinal Disorders, Vol. 13, No. 3, pp. 259-266, 2000.
[27] M. F. Shepard, M. R. Davies, A. Abayan, J. Michael-Kabo, J. C. Wang, “Effects of polyaxial pedicle screws on lumbar construct rigidity,” Journal of Spinal Disorders, Vol. 15, No. 3, pp. 233-236, 2002.
[28] R. E. Stanford, A. H. Loefler, P. M. Stanford, W. R. Walsh, “Multiaxial pedicle screw designs: static and dynamic mechanical testing,” Spine, Vol. 29, No. 4, pp. 367–375, 2004.
[29] S. H. Chen, R. M. Lin, H. H. Chen, K. J. Tsai, “Biomechanical effects of polyaxial pedicle screw fixation on the lumbosacral segments with an anterior interbody cage support,” BMC Musculoskeletal Disorders, Vol. 8, No. 28, 2007.
[30] T. Liu, W. J. Zheng, C. Q. Li, G. D. Liu, Y. Zhou, “Design and biomechanical study of a modified pedicle screw,” Chinese Journal of Traumatology, Vol. 13, No. 4, pp. 222-228, 2010.
[31] T. Demir, N. Camuşcu, “Design and performance of spinal fixation pedicle screw system,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 226, No. 1, pp. 33-40, 2012.
[32] C. C. Hsu, C. K. Chao, J. L. Wang, S. M. Hou, Y. T. Tsai, J. Lin, “Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses,” Journal of Orthopaedic Research, Vol. 23, No. 4, pp. 788-794, 2005.
[33] C. S. Chen, W. J. Chen, C. K. Cheng, S. H. E. Jao, S. C. Chueh, C. C. Wang, “Failure analysis of broken pedicle screws on spinal instrumentation,” Medical Engineering and Physics, Vol. 27, No. 6, pp. 487-496, 2005.
[34] C. K. Chao, C. C. Hsu, J. L. Wang, J. Lin, “Increasing bending strength and pullout strength in conical pedicle screw: biomechanical tests and finite element analyses,” Journal of Spinal Disorders and Techniques, Vol. 21, No. 2, pp. 130-138, 2008.
[35] 網路資料︰Aerospace Specification Metals Inc., ASM,取自
http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641
[36] S. M. Kurtz, “UHMWPE Biomaterials Handbook,” Academic Press, p. 3, 2009.
[37] 網路資料︰MechGuru,取自
http://blog.mechguru.com/machine-design/typical-coefficient-of-friction-values-for-common-materials/
[38] 網路資料︰WIKIPEDIA,取自
http://en.wikipedia.org/wiki/Bolted_joint
[39] C. A. Lill, U. Schlegel, D. Wahl, E. Schneider, “Comparison of the in vitro holding strengths of conical and cylindrical pedicle screws in a fully inserted setting and backed out 180°,” Journal of Spinal Disorders, Vol. 13, No. 3, pp. 259-266, 2000.
[40] Y. Amaritsakul, C. K. Chao, J. Lin, “Biomechanical evaluation of bending strength of spinal pedicle screws, including cylindrical, conical, dual core and double dual core designs using numerical simulations and mechanical tests,” Medical Engineering and Physics, Vol. 36, No. 9, pp. 1218-1223, 2014.