跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江昱彥
Yu-Yen Chiang
論文名稱: 無鉛銲料錫銀銦與銅基板的界面反應
The Interfacial Reaction of SnAgIn Pb-Free Solder on Cu Substrates
指導教授: 吳子嘉
Albert T. Wu
陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 界面反應錫銀銦無鉛銲料
外文關鍵詞: Pb-free solder, Sn-Ag-In, Interfacial Reaction
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的變遷,環境保護的觀念越來越重要,在封裝製程中常用的錫鉛銲料,由於鉛具有毒性,因此已經全面改用無鉛銲料。無鉛銲料的種類眾多,但能夠取代錫鉛銲料較少,取代錫鉛銲料必須有相似或更佳的機械性質、濕潤性、熔點、可靠度等等性質。許多銲料的機械性質較佳,但熔點過高將導致生產成本增加。為了降低熔點並維持機械性質,在本實驗中利用SnAg銲料添加In,以降低熔點。
    本實驗利用Sn-Ag銲料混合In,調配出94Sn-3Ag-3In及80Sn-3Ag-17In兩種成分的銲料,其熔點分別為214.7℃及193.3℃,與銅基板進行液相/固相界面反應及固相/固相界面反應。實驗中形成的介金屬化合物為Cu3(Sn,In)及Cu6(Sn,In)5。利用影像軟體計算IMC生成的厚度與時間的關係,求得時間對數n近似於1/3,表示反應為熟化機制所控制,以Arrhenius equation計算出兩種銲料與銅基板生成Cu6Sn5所需的視活化能,94Sn-3Ag-3In及80Sn-3Ag-17In分別為23及24.5 KJ/mol,與文獻中的Sn-Ag-Bi-In相較之下活化能少了一半,主要的原因為添加Bi將導致Cu於銲料的溶解度增加,進而減少析出形成IMC的機會。
    除了界面處以外,銲料內部也有Cu6Sn5及大量的細微顆粒的存在,經過EPMA分析,散布於銲錫中的IMC主要成分以Sn、Ag及In三種原子以不固定比例組成之ζ相,在94Sn-3Ag-3In中,In含量較低,因此研判為ζ相,而80Sn-3Ag-17In由於含In量極高,Ag:In的比例接近2:1,因此研判IMC為Ag2In+ζ相。
    在固相/固相反應中,94Sn-3Ag-3In的活化能為64.92,80Sn-3Ag-17In由於實驗溫度過於接近反應起始點,無法求得準確之活化能。94Sn-3Ag-3In中,ζ相經過時效處理後,轉為Ag3Sn+ζ,而80Sn-3Ag-17In則維持Ag2In+ζ的相。


    This thesis investigated the interfacial reaction between Sn-Ag-In lead-free solder and Cu substrates. Two composition of solder, 94Sn-3Ag-3In and 80Sn-3Ag-17In, were employed. the addition of indium decreases the melting point of 94Sn-3Ag-3In and 80Sn-3Ag-17In to 214.7 and 193.3℃, respectivily. When increaseing the amount of indium, the pasty range increases. due to partial melting of solder. The amount of Sn affects the undercooling despite the amount of external additives. The interfacial intermetallic compound are Cu6(Sn,In)5 in Sn-Ag-In system solder and Cu6Sn5 in SnAgBi and SnAgBiIn solder. Because the addition of Bi increase the solubility of In in Sn. The activation energy were 23 and 24.5 KJ/mol in 94Sn-3Ag-3In and 80Sn-3Ag-17In, respectivily. The value is half of that in SnAgBiIn. The Bi could enhance the dissolution of Cu in solder. The white particals that formed inside the bulk solder of 94Sn-3Ag-3In are ζ phase, a solid solution of Ag4Sn and Ag3In, and the particles in 80Sn-3Ag-17In should be Ag2In+ζ phase.
    In solid state reaction. The activation energy are 64.92 and 219.8 KJ/mol in 94Sn-3Ag-3In and 80Sn-3Ag-17In, respectivily. The white particals inside bulk solder should be Ag3Sn+ζ phase and Ag2In+ζ phase in 94Sn-3Ag-3In and 80Sn-3Ag-17In, respectivily.

    目錄 中文摘要..........II Abstract..........III 目錄..........V 圖目錄..........VII 表目錄..........IX 第一章 序論..........1 1-1 構裝層級..........1 1-2 構裝技術..........2 1-2-1 打線接合..........2 1-2-2 捲帶式接合..........3 1-2-3 球閘陣列封裝..........3 1-2-4 覆晶接合..........4 1-3 研究目的..........4 第二章 相關理論與文獻回顧..........7 2-1合金銲料..........7 2-1-1 SnPb..........7 2-1-2 SnAg..........8 2-1-3 SnAgCu銲料..........9 2-1-4 SnBi銲料與Sn-Ag-Bi銲料..........9 2-1-5 SnIn銲料與Sn-Ag-In銲料..........10 2-1-6 Sn-Ag-Bi-In銲料..........10 2-2 介金屬化合物..........11 2-3 界面反應..........11 2-4 影響可靠度的因素..........13 2-4-1 micro 效應..........13 2.5 研究目的..........14 第三章 實驗方法..........20 3-1 銲料製備..........20 3-2 液相-固相界面反應..........20 3-3 固相-固相界面反應..........21 3-4 試片分析..........21 3-4-1 熱差式掃描熱量分析儀 (DSC)..........22 3-4-2 掃描式電子顯微鏡 (SEM)..........22 3-4-3 X射線繞射儀 (XRD)..........23 3-4-4 電子微探儀 (EPMA)..........24 第四章 實驗結果與討論..........25 4.1 熱性質分析..........25 4-2 Sn-Ag-In銲料與Cu基材的液固反應..........26 4-2-1 介金屬化合物..........26 4-2-2 介金屬化合物生成所需之活化能..........27 4-2-3 成分分析..........28 4.3 Sn-Ag-In銲料與Cu基材的固固反應..........29 4.3.1 介金屬化合物..........29 4.3.2 成分分析..........30 4.3.3 Micro Void..........31 第五章 結論..........56 參考文獻..........58

    1. 陳信文等編著,電子構裝技術與材料,高立圖書有限公司,台灣,民國八十三年。
    2. 構裝的層次, http://elearning.stut.edu.tw/teach/electron/coat.htm
    3. 張淑如,「鉛對人體之危害」,勞工安全衛生簡訊,第12期,民國八十四年
    4. H. J. Fecht, M. X. Zhang, Y. A. Chang and J. H. Perepezko, “Metastable Phase Equilibria in the Lead-Tin Alloy System, Part II: Thermodynamic Modelling”, Met. Trans. A, vol. 20, no. 5, 1989, pp.795-803.
    5. A. J. Sunwoo, J. W. Morris and G. K. Lucey, “The growth of Cu-Sn intermetallics at a pretinned copper/solder interface”, Metall Trans. A, vol. 23 no. 4, 1992, pp. 1323-1332
    6. D. Grivas, D. Frear, L. Quan, J. Morris, “The formation of Cu3Sn intermetallic on the reaction of copper with 95Pb5Sn solder”, J. Electron. Mater, vol. 15 ,no. 6, 1986, pp. 355-359
    7. H. K. Kim, H. K. Liou, K. N. Tu, “Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu”, Appl. Phys. Lett., vol. 66, no. 18, 1995, pp. 2337-2339
    8. H. K. Kim, K. N.Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening”, Phy. Rev. B., vol. 53, no. 23, 1996, pp. 16027-16034
    9. A. A. Liu, H. K. Kim, K. N. Tu, P. A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. Vol. 80, no. 5 ,1996, pp. 2774-2780
    10. S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu, and C. C. Chen, ”Phase transformation and microstructural evolution in solder joints,” JOM, vol. 59, 2007, pp.39-43.
    11. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, J. K. Kivilahti, “Wetting reaction vs. solid state aging of eutectic SnPb on Cu”, J.Appl.Phys. vol. 89, no. 9, 2001, pp. 4843-4849
    12. K. N. Tu, K. Zeng, “Tin-Lead(SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng., R, vol. 34, no. 1, 2001, pp. 1-58
    13. C. M. Chuang, P. C. Shih, and K. L. Lin, “Mechanical strength of Sn-3.5Ag-based solders and related bondings” , J. Electron. Mater., vol. 33, no. 1, 2004, pp. 1-6.
    14. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” J. Electron. Mater., vol. 24, no. 10, 1995, pp.1465-1472
    15. S. K. Kang and A. K. Sarkhel, “Lead (Pb)-Free Solders for Electronic Packaging,” J. Electron. Mater., vol. 23, no. 8, 1994, pp. 701-707.
    16. 鄧軒宇,Sn-3.5Ag-0.5Cu無鉛銲錫受階梯狀負荷之潛變性質,碩士論文,國立中央大學機械工程研究所,桃園,2005。
    17. S. W. Chen and Y. W. Yen, “Interfacial Reactions in Ag-Sn/Cu Couples”, J. Electron. Mater., vol. 28, no. 11,1999, pp. 1203-1208
    18. M. He, Z. Chen and G. Qi, “Solid state interfacial reaction of Sn–37Pb and Sn–3.5Ag solders with Ni–P under bump metallization” Acta Mater. Vol. 52, no.7, 2004, pp. 2047–2056
    19. J. Y. Park, C. W. Yang, J. S. Ha, C.-U. Kim,E. J. Kwon,S. B. Jung and C.S. Kang,” Investigation of Interfacial Reaction Between Sn-Ag Eutectic Solder and Au/Ni/Cu/Ti Thin Film Metallization”, J. Electron. Mater., vol. 30, no. 9 ,2001 ,pp. 1165-1170
    20. S. W. Chen, C. H. Wang, S. K. Lin, C. N. Chiu, “Phase diagrams of Pb-free solders and their related materials systems,” J. Mater. Sci. - Mater. Electron., vol. 18, 2007, pp. 19-37.
    21. J. W. Yoon, B. I. Noh, B. K. Kim, C. C. Shur, S. B. Jung,"Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints", J. Alloys Compd. Vol. 486, No. 1-2, 2009, pp. 142-147
    22. I. E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications,” J. Mater. Sci. - Mater. Electron., vol. 18, no. 1, 2007, pp. 55-76.
    23. 黃俊鳴,不同負荷條件下之Sn-3.5Ag-0.5Cu無鉛銲錫低週疲勞行為,碩士論文,國立中央大學機械工程研究所,桃園,2005。
    24. A. Sharif, and Y. C. Chan, “Comparative study of interfacial reactions of Sn-Ag-Cu and Sn-Ag solders on Cu pads during reflow process,” J. Electron. Mater., vol. 34, no. 1, 2005, pp. 46-52.
    25. C. M. Chuang, and K. L. Lin, “Effect of microelements addition on the interfatial reaction between Sn-Ag-Cu solders and the Cu substrate,” J. Electron. Mater., vol. 32, no. 12, 2003, pp. 1426-1431.
    26. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, “Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni” J. Electron. Mater., Vol. 31, No. 6, 2002, pp. 584-590
    27. Q. Lin, J. Zhao, X. M. Wang, and L. Wang, “The effect of Bi on the IMC growth in Sn-3Ag-0.5Cu solder interface during aging process,” 2004 International Conference on the Business of Electronic Product Reliability and Liability, 2004, pp. 42-46.
    28. Y. Kariya, and M. Otsuka, “Effect of bismuth on the isothermal fatigue properties of Sn-3.5mass% Ag solder alloy,” J. Electron. Mater., vol. 27, no. 7, 1998, pp. 866-870.
    29. K. Suganuma, “Advances in lead-free electronics soldering,” Curr. Opin. Solid State Mater. Sci., vol. 5, no. 1, 2001, pp. 55-64.
    30. Q. L. Yang, and J. K. Shang, “Interfacial Segregation of Bi during Current Stressing of Sn-Bi/Cu Solder Interconnect,” J. Electron. Mater., vol. 34, no. 11, 2005, pp. 1363-1367.
    31. G. Duscher, M. F. Chisholm, U. Alber, and M. Ruhle,” Bismuth-induced embrittlement of copper grain boundaries”, Nat. Mater. Vol 3,2004, pp. 621-626
    32. M. S. Yeh, “Effects of indium on the mechanical properties of ternary Sn-In-Ag solders,” Metall. Mater. Trans. A, vol. 34A, 2003, pp. 361-365.
    33. P. G. Kim, and K. N. Tu, “Fast dissolution and soldering reactions on Au foils,” Mater. Chem. Phys., vol. 53, no. 2, 1998, pp. 165-171.
    34. J. L. Freer, and W. Morris, “Microstructure and creep of eutectic indium/tin on copper and nickel substrates,” J. Electron. Mater., vol. 21, no. 6, 1992, pp. 647-652.
    35. A. B. El-Bediwi, and M. M. El-Bahay, Radiation Effects & Defects in Solids, vol. 159, UK, Taylor & Francis, 2004, pp. 133-140.
    36. K. S. Kim, T. Imanishi, K. Suganuma, M. Ueshima, and R. Kato, “Properties of low temperature Sn-Ag-Bi-In solder systems,” Microelectron. Reliab., vol. 47, no. 7, 2007, pp. 1113-1119.
    37. A. Yamaguchi, Y. Yamashita, A. Furusawa, K. Nishida, T. Hojo, Y. Sogo, A. Miwa, A. Hirose, and K. Kobayashi, “Properties of solder joints using Sn-Ag-Bi-In solder,” Mater. Trans., JIM, vol. 45, no. 4, 2004, pp. 1282-1289.
    38. J. Zhao, C. Q. Cheng, L. Qi, C. Y. Chi, “Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples” J. Alloys Compd. Vol. 473, No. 1-2, 2009, pp. 382-388
    39. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng and J. K. Kivilahti, “Wetting Reaction Versus Solid State Aging of Eutectic SnPb on Cu” J. Appl. Phys.,vol. 89, no. 9,2001, pp. 4843-4849
    40. A.D. Smigelkas and E.O. Kirkendall, Trans. Am. Inst. Mining Met Engrs., vol. 171, 1947, p p. 130.
    41. K.N. Tu and R. D. Thompson," Kinetics of interfacial reaction in bimetallic Cu---Sn thin films”, Acta Metall., vol, 30, no. 5, 1982, pp. 947-952
    42. K. -W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker,” Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys” J. Electron. Mater., Vol.29, no.10, 2000, pp.1122-1136
    43. S. K. Kang, M. G. Cho, P. Lauro, and D.Y. Shih,” Rapid Communications: Study of the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process” Mater. Res. Sci., vol. 22 , no. 3, 2007, 557-560
    44. V.T. Witusiewicz, U. Hecht, B. Bottger and S. Rex, "Thermodynamic re-optimisation of the Bi–In–Snsystem based on new experimental data", J. Alloys Compd., vol. 428, 2007, pp.115-124
    45. Albert T.Wu, Ming-Hsun Chen, Che-Hsun Huang, “Formation of intermetallic compounds in Sn-Ag-Bi-In solder systems on Cu substrates”, J. Alloys Compd., vol. 476, no. 1-2, 2009, pp. 436–440
    46. Albert. T. Wu, M. H. Chen, and C, N, Siao,” The Effects of Solid-State Aging on the Intermetallic Compounds of Sn-Ag-Bi-In Solders on Cu Substrates” J. Electron. Mater. Vol. 38,no. 2,2008 ,pp, 252-256
    47. V. T. Witusiewicz, U. Hecht, B. BÖttger, and S. Rex,” Thermodynamic re-optimisation of the Bi–In–Sn system based on new experimental data “, J. Alloys Compd. Vol. 428, no. 1-2, 2007, pp. 115-124
    48. I. Ohnuma, Y. Cui, X. J. Liu, Y. Inohana, S. Ishihara, H. Ohtani, R. Kainuma, and K. Ishida,” Phase Equilibria of Sn-In Based Micro-Soldering Alloys” J. Electron. Mater. Vol. 29,no.10 ,2000, pp. 1113-1121
    49. T. H. Chuang, C.L. Yu, S.Y. Chang, and S. S. Wang, “Phase identification and growth kinetics of the intermetallic compounds formed during In-49Sn/Cu soldering reactions,” J. Electron. Mater., vol. 31, no. 6, 2002, pp. 640-645.
    50. M. L. Huang, and L. Wang, “Effects of Cu, Bi, and In on microstructure and tensile properties of Sn-Ag-X (Cu, Bi, In) solders,” Metall. Mater. Trans. A, vol. 36, 2005, pp. 1439-1446.
    51. T. M. Korhonen and J. K. Kivilahti,” Thermodynamics of the Sn-In-Ag Solder System” J. Electron. Mater.,vol. 27, no. 3, 1998, pp. 149-158
    52. Q. L. Yang, and J. K. Shang,” Interfacial Segregation of Bi during Current Stressing of Sn-Bi/Cu Solder Interconnect” J. Electron. Mater. Vol. 34, no.11, 2005, pp. 1363-1367
    53. D. R. Flanders, E. G. Jacobs and R. F. Pinizzotto,"Activation energy of intermetallic growth of Sn-Ag eutectic solder on copper substrates", J. Electron. Mater., vol. 26, no. 7, 1997, pp. 883-887.
    54. T.-M. Korhonen, and J. K. Kivilahti, “Thermodynamics of the Sn-In-Ag solder system,” J. Electron. Mater., vol. 27, no. 3, 1998, pp. 149-158.

    QR CODE
    :::