| 研究生: |
許惠君 Hui-chun Hsu |
|---|---|
| 論文名稱: |
結合內容相關位元率量化模型與興趣區域之H.264/AVC畫面內預測編碼 A Joint Content Adaptive Rate-Quantization Model and Region of Interest Intra Coding of H.264/AVC |
| 指導教授: |
蘇柏齊
Po-chyi Su |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 位元率-量化模型 、位元率控制 、興趣區域 、H.264/AVC |
| 外文關鍵詞: | H.264/AVC, ROI, Rate Control, Rate-Quantization Model |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個結合內容相關位元率量化模型與興趣區域之H.264/AVC畫面內預測編碼。在視訊編碼的位元率控制中,畫面內預測編碼佔了很重要的地位,其過高或過低的位元率將影響整體的編碼效率。在本篇論文中,我們提出了一個較準確的畫面內預測位元率量化模型(Rate-Quantization model, R-Q model)。我們根據區塊內容的複雜度與目標之位元率,求得此區塊之編碼率與量化參數(Quantization Parameter, QP)值的相對應關係。此外,在有了此內容相關位元率量化模型後,我們可結合興趣區域編碼,使得本機制在有限的位元率下,於興趣區域給予較多位元數,也就是較低之QP值,而使其具有較佳的畫質,而在視覺較不注意之區域給予較少位元數,藉由內容相關位元率量化模組與興趣區域的結合能在有限之位元數下達到較佳的人眼視覺效果。我們將畫面分成三個區域以各自給予適當的QP值。我們的實驗顯示,整體畫面平均之峰值訊號雜訊比 (Peak Signal to Noise Ratio, PSNR) 雖下降0.27 dB,但人眼視覺最關注區域之PSNR值增加了1.2 dB,而人眼最關注的前兩個區域則增加了0.51 dB。與傳統畫面階層之R-Q model相較,此區塊階層之R-Q model更具彈性,更容易達到目標位元率。
This thesis presents a joint content adaptive rate-quantization model and region of interest intra coding of H.264/AVC. The rate control of video coding is an important issue and the intra coding plays a very crucial role. Inappropriate assignment of bitrates in intra coding will deteriorate the overall coding performance. We will first present a more accurate content adaptive Rate-Quantization (R-Q) model, by which we can obtain the relationship between the Quantization Parameter (QP) of a macroblock and the block complexity. Given a target bit-rate, we can thus assign a more suitable QP for a frame. In addition, since our model is built on blocks, or more specifically macroblocks, Region of Interest (ROI) coding can also be achieved. More bits can be assigned to the ROI by using a lower quantization parameter (QP) so that the perceptual quality can be maintained within the limited bit-rate. Our macorblock-level R-Q model, compared with the traditional frame-level RQ model, is more flexible and can achieve the target bit rate more accurately.
[1] W. K. Pratt, Digital Image Processing. New York:Wiley, 1978, ch. 10.
[2] A. N. Netravali and J. O. Limb, “Picture coding: A review,” Proc. IEEE, vol. PROC-68, no. 3, pp. 7–12, Mar. 1960.
[3] R. C. Reininger and J. D. Gibson, “Distributions of the two-dimensional DCT coefficients for images,” IEEE Trans. Commun., vol. COM-31, no. 6, pp. 835–839, Jun. 1983.
[4] S. R. Smooth and R. A. Lowe, “Study of DCT coefficients distributions,” in Proc. SPIE, Jan. 1996, pp. 403–311.
[5] F. Muller, “Distribution shape of two-dimensional DCT coefficients natural images,” Electron. Lett., vol. 29, no. 22, pp. 1935–1936, Oct. 1993.
[6] T. Eude, R. Grisel, H. Cherifi, and R. Debrie, “On the distribution of the DCT coefficients,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5, Apr. 1994, pp. 365–368.
[7] N. Kamaci, Y. Altunbasak, and R. M. Mersereau, “Frame bit allocation for the H.264/AVC video coder via a cauchy-density-based rate and distortion models,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8, pp. 994–1006, Aug. 2005.
[8] X. Jing, L.-P. Chau, and W.-C. Siu, “Frame complexity-based rate-quantization model for H.264/AVC intraframe rate control,” IEEE Signal Process. Lett., vol. 15, no. 1, pp. 373–376, 2008.
[9] W.-J. Tsai and T.-L. Chou, “Scene Change Aware Intra-Frame Rate Control for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 12, pp. 1882–1886, Dec. 2010.
[10] C.-W. Tang, “Spatiotemporal Visual Considerations for Video Coding,” IEEE Trans. Mutimedia, vol. 9, no. 2, pp. 231–238, Feb. 2007.
[11] Y. Liu, Z.-G. Li, Y.-C. Soh, “Region-of-Interest Based Resource Allocation for Conversational Video Communication of H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 1, pp. 134–139, Jan. 2008.
[12] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.
[13] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency”. Advances in Neural Information Processing Systems, 19:545–552, 2007.
[14] S. Lee, M. S. Pattichis, and A. C. Bovik, “Foveated video quality assessment,” IEEE Trans. Multimedia, vol. 4, no. 1, pp. 129–132, Mar.2002.
[15] JM 17.2 Reference Software. [Online]. Available: http://iphome.hhi.de/suehring/tml/download/.