| 研究生: |
黃予涵 Yu-Han Huang |
|---|---|
| 論文名稱: |
電商平台顧客瀏覽行為與意圖之研究 Customer’s Browsing Behaviors and Intention in E-Commerce Platform |
| 指導教授: |
陳炫碩
Shiuann-Shuoh Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 電商平台 、顧客瀏覽行為與意圖 |
| 外文關鍵詞: | E-Commerce Platform, Customer’s Browsing Behaviors and Intention |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路商店的崛起,瀏覽資料成為商家積極想要分析的部分,而零售商更 是我們生活最息息相關的產業,現今人們的購買範圍已經不僅限於線下,本研究 的目的即是探討如何藉由零售商的線上瀏覽資料解析出更多背後意涵,並更深入 地洞悉和理解每次客戶來訪時的購物行為和意圖,從而使電商能夠根據每次來訪 的需求為其提供量身定制而使其滿意的服務。
此研究提出一種結合監督式與非監督式的商業分析方法,先將每筆資料整理 成以工作階段(Session)為單位,再以 K-means 為主做分群,將資料分成五群,再 根據分群狀況使用決策樹去找出特徵值且命名。
將理論與實務結合,我們擬合此五群與客戶旅程(Customer Journey)之理論, 第一群至第五群皆符合察覺(Awareness)階段、思考(Consideration)階段、購買 (Purchase)階段,客戶旅程裡的前三階段,隨後也給予根據客戶旅程的行銷策略建 議。此外,在第四章文末更加入預測分析,預測顧客在工作階段內是否進入購物 車,藉此更提升本研究對瀏覽資料分析的全面性。
Online consumer browsing behavior has been widely researched by many companies and researchers. The retail industry is also the most common industry in the world. Nowadays, people not only purchase offline but also purchase online and even more often than before. This study extends the analysis of current research on finding more insights behind browsing data. The goal is also to delve deeper into and comprehend the customers’ shopping behavior and intentions per visit and, thus, enable retailers to provide customers’ satisfactory services tailored to their requirements per visit. We demonstrate the utility of our approach by applying it to a real case of a retailer.
We propose a business analytics approach that utilizes integrated supervised and unsupervised learning. Firstly, we do the session-based data preprocessing, after which we use K-means to find 5 clusters and name them after their rules and patterns by decision tree.
On the integration of theory and practice, we map these 5 clusters with customer journey. The results show group 1 to group 5 just fit “Awareness”, “Consideration”, “Purchase” three phases. We also propose some marketing strategies around the customer journey. In addition, we use supervised learning to predict whether or not a customer in a session will go to the Shopping Cart, which makes this study more comprehensive.
Adar, E., Teevan, J., & Dumais, S. T. (2009). Resonance on the web: Web dynamics and revisitation patterns. Conference on Human Factors in Computing Systems - Proceedings, 1381–1390. https://doi.org/10.1145/1518701.1518909
Bloch, P. H., & Richins, M. L. (1983). Shopping Without Purchase: an Investigation of Consumer Browsing Behavior. ACR North American Advances, NA-10.
Bolton, R. N., & Shankar, V. (2003). An empirically derived taxonomy of retailer pricing and promotion strategies. Journal of Retailing, 79(4), 213–224. https://doi.org/10.1016/j.jretai.2003.09.005
Boone, D. S., & Roehm, M. (2002). Retail segmentation using artificial neural networks. International Journal of Research in Marketing, 19(3), 287–301. https://doi.org/10.1016/S0167-8116(02)00080-0
Brown, M., Pope, N., & Voges, K. (2003). Buying or browsing? European Journal of Marketing, 37(11/12), 1666–1684. https://doi.org/10.1108/03090560310495401
Buckinx, W. ., & Poel, D. Van Den. (2003). Predicting Online Purchasing Behavior.
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
Burt, S., & Sparks, L. (2003). E-commerce and the retail process: A review. Journal of Retailing and Consumer Services, 10(5), 275–286. https://doi.org/10.1016/S0969- 6989(02)00062-0
Chen, Y. L., Hsu, C. L., & Chou, S. C. (2003). Constructing a multi-valued and multi- labeled decision tree. Expert Systems with Applications, 25(2), 199–209. https://doi.org/10.1016/S0957-4174(03)00047-2
Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35(2), 231– 243. https://doi.org/10.1016/S0167-9236(02)00108-2
Close, A. G., & Kukar-Kinney, M. (2010). Beyond buying: Motivations behind consumers’ online shopping cart use. Journal of Business Research, 63(9–10), 986–992. https://doi.org/10.1016/j.jbusres.2009.01.022
38
Cox, L. A. (2002). Data mining and causal modeling of customer behaviors. In Telecommunication Systems (Vol. 21, Issues 2–4, pp. 349–381). Springer. https://doi.org/10.1023/A:1020911018130
Davidson, I. (2002). UnderstandingK-MeansNon-hierarchicalClustering IanDavidson. In pdfs.semanticscholar.org. https://pdfs.semanticscholar.org/eff6/7c0447c1c37bbbeb7638813848d2206ddace.p df
Davies, G. (1993). Trade marketing strategy.
Dennis, C., Marsland, D., & Cockett, T. (2001). Data mining for shopping centres – customer knowledge-management framework. Journal of Knowledge Management, 5(4), 368–374. https://doi.org/10.1108/13673270110411797
FORGY, & W., E. (1965). Cluster analysis of multivariate data : efficiency versus interpretability of classifications. Biometrics, 21, 768–769.
Goel, S., Hofman, J. M., & Sirer, M. I. (2012). Who Does What on the Web: A Large- Scale Study of Browsing Behavior. In Sixth International AAAI Conference on Weblogs and Social Media. www.aaai.org
Grewal, D., Retailing, A. R.-J. of, & 2017, U. (2017). AL & Nordfält, J. 2017.’The future of retailing’.
Griva, A., Bardaki, C., Pramatari, K., & Papakiriakopoulos, D. (2018). Retail business analytics: Customer visit segmentation using market basket data. Expert Systems with Applications, 100, 1–16. https://doi.org/10.1016/j.eswa.2018.01.029
Halvorsrud, R., Kvale, K., & Følstad, A. (2016). Improving service quality through customer journey analysis. Journal of Service Theory and Practice, 26(6), 840– 867. https://doi.org/10.1108/JSTP-05-2015-0111
Hansen, T. H., & Skytte, H. (1998). Retailer buying behaviour: A review. International Journal of Phytoremediation, 21(1), 277–301. https://doi.org/10.1080/095939698342788
Hartigan, J. (1975). Clustering algorithms. https://dl.acm.org/doi/abs/10.5555/540298 Jonathan Reynolds, Malin Sundström, I. A. et al. (2014). Expert Group on Retail Sector
Innovation Retail Innovation Six perspectives on. https://doi.org/10.2777/60660 39
KETCHEN, D. J., & SHOOK, C. L. (1996). THE APPLICATION OF CLUSTER ANALYSIS IN STRATEGIC MANAGEMENT RESEARCH: AN ANALYSIS AND CRITIQUE. Strategic Management Journal, 17(6), 441–458. https://doi.org/10.1002/(SICI)1097-0266(199606)17:6<441::AID- SMJ819>3.0.CO;2-G
Kim, J. K., Song, H. S., Kim, T. S., & Kim, H. K. (2005). Detecting the change of customer behavior based on decision tree analysis. Expert Systems, 22(4), 193– 205. https://doi.org/10.1111/j.1468-0394.2005.00310.x
Kitts, B., Freed, D., & Vrieze, M. (2000). Cross-sell: A Fast Promotion-Tunable Customer-item Recommendation Method Based on Conditionally Independent Probabilities.
Kukar-Kinney, M., & Close, A. G. (2010). The determinants of consumers’ online shopping cart abandonment. Journal of the Academy of Marketing Science, 38(2), 240–250. https://doi.org/10.1007/s11747-009-0141-5
Kumar, R., & Tomkins, A. (2010). A characterization of online browsing behavior. Proceedings of the 19th International Conference on World Wide Web, WWW ’10, 561–570. https://doi.org/10.1145/1772690.1772748
Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69–96. https://doi.org/10.1509/jm.15.0420
Likas, A., Vlassis, N., & J. Verbeek, J. (2003). The global k-means clustering algorithm. Pattern Recognition, 36(2), 451–461. https://doi.org/10.1016/S0031- 3203(02)00060-2
Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. https://doi.org/10.1109/TIT.1982.1056489
Macqueen, J. (1967). SOME METHODS FOR CLASSIFICATION AND ANALYSIS OF MULTIVARIATE OBSERVATIONS. In books.google.com. https://books.google.com/books?hl=zh- TW&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=P A281&dq=Some+Methods+for+cla ssification+and+Analysis+of+Multivariate+Observations&ots=nO- dEYKeoL&sig=eQSjmY5HBURcMirHRn3Bd4E6e9E
40
Michael J. A. Berry, G. S. L. (2004). Data Mining Techniques: For Marketing, Sales, and Customer Relationship. https://books.google.com.tw/books?hl=zh- TW&lr=&id=Ni5nMDO1OfEC&oi=fnd&pg=PR19&dq=Data+mining+techniques +second+edition+- +for+marketing,+sales,+and+customer+relationship+management.&ots=v9d4mm EPJK&sig=94xtRZcKCAtXhwiX7RnErT5PUz8&redir_esc=y#v=onepage&q=Dat
Ngai, E. W. T., Xiu, L., & Chau, D. C. K. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. In Expert Systems with Applications (Vol. 36, Issue 2 PART 2, pp. 2592–2602). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2008.02.021
Rosenbaum, M. S., Otalora, M. L., & Ramírez, G. C. (2017). How to create a realistic customer journey map. Business Horizons, 60(1), 143–150. https://doi.org/10.1016/j.bushor.2016.09.010
Swindley, D. (1992). Retail Buying in the United Kingdom. The Service Industries Journal, 12(4), 533–544. https://doi.org/10.1080/02642069200000063
Tang, K., Chen, Y. L., & Hu, H. W. (2008). Context-based market basket analysis in a multiple-store environment. Decision Support Systems, 45(1), 150–163. https://doi.org/10.1016/j.dss.2007.12.016
Therneau, T. M., & Atkinson, E. J. (2019). An Introduction to Recursive Partitioning Using the RPART Routines.
Torres de Oliveira, R., Indulska, M., Steen, J., & Verreynne, M. L. (2020). Towards a framework for innovation in retailing through social media. Journal of Retailing and Consumer Services, 54, 101772. https://doi.org/10.1016/j.jretconser.2019.01.017
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. In The Nature of Statistical Learning Theory. Springer New York. https://doi.org/10.1007/978-1- 4757-2440-0
Vapnik, & Vladimir. (1998). The Support Vector Method of Function Estimation. In Nonlinear Modeling. Springer US. https://doi.org/10.1007/978-1-4615-5703-6_3
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., ... Yutani,
41
H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wong, M., & Hartigan, J. (1979). A k-means clustering algorithm.
42