跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖哲儀
Jer-Yi Liao
論文名稱: 使用同步輻射X光與分子動力模擬研究鋯基非晶質合金複合材料之塑性形變機制
Micromechanisms Study of a Dendrite/Zr-based Bulk-metallic-glass Composite Subjected to Plastic Deformation via In-situ Synchronou X-ray Measurements and Molecular Dynamics Simulation
指導教授: 黃爾文
E-Wen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 非晶質合金同步輻射X光分子動力模擬
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非晶質合金在室溫時,具有高硬度,高強度、高楊氏模數與高彈性形變能力,也有良好的耐腐蝕性與耐磨耗性。但是此材料的缺點為缺乏延展性,當施加的外力超過材料的彈性形範圍時,材料就會在無預警的情形下突然斷裂,因此限制了非晶質合金的應用範圍。
    許多文獻藉由不同的製程方式,改良非晶質合金的延展性,本篇論文所研究的非晶質合金,也已經有增加其延展性,但由於目前影響非晶質合金延展性的機制尚不明瞭,因此本篇論文藉由不同的實驗,觀察材料在受外力時的微觀結構變化,去分析其影響的機制。
    本實驗先由高能量X光繞射對材料進行測量,再由分析材料所產生的繞射峰,獲得材料之晶格應變(lattice strain)。接著比照文獻,建構出本研究之材料內結晶相的模型,並由材料在不同壓縮循環時的晶格應變變化,引用文獻的機制來解釋此現象。再利用高解析掃描穿透式電子顯微鏡影像(HR-TEM)、能量散射光譜儀(EDS)、三維斷層掃描(three-dimensional tomography)與分子動力模擬(Molecular dynamics)佐證我們建構的模型與解釋機制之正確性,進而了解影響材料延展性的機制。


    In the current study, a Zr-based BMG that contains a dendritic crystalline phase performs remarkably large plastic strain. The plastic-deformation micromechanisms of the dendrite/Zr-based bulk-metallic-glass-matrix composite (BMGMC) are revealed. A three-dimensional (3-D) tomography experiment was carried out using the European Synchrotron Radiation Facility (ESRF). The correlating successive images qualitatively indicate the load-sharing micromechanisms. Meanwhile, we simultaneously measured the Bragg peaks with in-situ synchrotron x-ray. During loading-unloading cycles, there is asymmetric Bragg-peak evolution subjected to different levels of deformation. The in-situ peak profile analyses suggest that there is asymmetric load sharing between the amorphous matrix and the crystalline dendrites. The relationship between the microstructures and mechanical properties of the BMGMC materials are summarized.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 材料簡介 1 1-2 研究背景 2 1-3 研究動機 2 第二章 文獻回顧 3 2-1 非晶質合金的發展 3 2-2 鋯基非晶質合金介紹 4 2-3 In-situ與Ex-situ製程方式介紹 4 2-4 X光繞射原理與應用 5 2-4-1 X光之發現與原理 5 2-4-2 布拉格定律 6 2-4-3 X光繞射實驗分析與應用 6 第三章 實驗方法 8 3-1 材料製備方法 8 3-2 即時壓縮測試附設高能量X光繞射與三維斷層掃描 9 3-2-1 壓縮測試 9 3-2-2 高能量X光繞射 9 3-2-3 三維斷層掃描 10 3-3 高解析掃描穿透式電子顯微鏡觀察、選區繞射分析與能量散射光譜儀分析 11 3-3-1 高解析掃描穿透式電子顯微鏡觀察與選區繞射分析 11 3-3-2 能量散射光譜儀分析 11 3-4 分子動力模擬 12 3-5 繞射數據分析方法 13 3-5-1 二維繞射圖轉換為一維繞射曲線 13 3-5-2 高斯函數擬合 13 第四章 實驗結果與討論 14 4-1 繞射實驗與能量散射光譜儀實驗結果分析 14 4-1-1 繞射峰位置分析 14 4-1-2 以能量散射光譜儀實驗驗證核心與殼層模型 16 4-1-3 以晶格常數分析核心與殼層模型 18 4-1-4 以晶格模數分析核心與殼層模型 19 4-1-5 以核心與殼層模型分析繞射數據 21 4-2 高解析掃描穿透式電子顯微鏡實驗結果 24 4-3 斷層掃描分析 26 4-4 分子動力模擬分析 28 4-4-1 以中心對稱參數分析鋯銅非晶相系統 28 4-4-2 以中心對稱參數分析兩相之間的交界區域 29 4-4-3 以原子配位數影像分析晶相與非晶相交界區域 31 第五章 結論 33 參考文獻 35 圖 41 表 67 附錄 71

    1. Klement, W., R. Willens, and P. Duwez, Non-crystalline structure in solidified gold–silicon alloys. 1960. 187(4740): p. 869-870.
    2. Lund, A.C. and C.A. Schuh, Topological and chemical arrangement of binary alloys during severe deformation. Journal of applied physics, 2004. 95(9): p. 4815-4822.
    3. Demetriou, M.D., et al., A damage-tolerant glass. Nature materials, 2011. 10(2): p. 123-128.
    4. Hays, C., C. Kim, and W. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Physical Review Letters, 2000. 84(13): p. 2901-2904.
    5. Fan, C., et al., Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Physical review letters, 2006. 96(14): p. 145506.
    6. Wu, Y., et al., Bulk Metallic Glass Composites with Transformation-Mediated Work- Hardening and Ductility. Advanced Materials, 2010. 22(25): p. 2770-2773.
    7. Telford, M., The case for bulk metallic glass. Materials today, 2004. 7(3): p. 36-43.
    8. Chen, H. and D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses. Acta metallurgica, 1969. 17(8): p. 1021-1031.
    9. Chen, H., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
    10. Chen, H., J. Krause, and E. Coleman, Elastic constants, hardness and their implications to flow properties of metallic glasses. Journal of Non-Crystalline Solids, 1975. 18(2): p. 157-171.
    11. Inoue, A., et al., Ti-based amorphous alloys with a wide supercooled liquid region. Materials Letters, 1994. 19(3): p. 131-135.
    12. Inoue, A., T. Zhang, and T. Masumoto, Glass-forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156: p. 473-480.
    13. Inoue, A., et al., High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta materialia, 2001. 49(14): p. 2645-2652.
    14. Fan, C., H. Choo, and P.K. Liaw, Influences of Ta, Nb, or Mo additions in Zr-based bulk metallic glasses on microstructure and thermal properties. Scripta materialia, 2005. 53(12): p. 1407-1410.
    15. Li, J., et al., Significant Plasticity Enhancement of ZrCu-Based Bulk Metallic Glass Composite Dispersed by in-situ and ex-situ Ta Particles. Materials Science and Engineering: A, 2012. 551(15): p.249–254.
    16. Ott, R., et al., Micromechanics of deformation of metallic-glass–matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta materialia, 2005. 53(7): p. 1883-1893.
    17. Jang, J.S., et al., A Ni-free Zr-based bulk metallic glass with remarkable plasticity. Journal of Alloys and Compounds, 2011. 509: p. S109-S114.
    18. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 1992.
    19. 楊仲準, X光繞射分析技術與應用, 科儀新知第三十二卷第六期, 2011. p. 64-74.
    20. 林麗娟, X光繞射原理及其應用, 工業材料, 1994. 86期: p. 100-109.
    21. Qiao, J., et al., Resolving ensembled microstructural information of bulk-metallic-glass-matrix composites using synchrotron x-ray diffraction. Applied Physics Letters, 2010. 97(17): p. 171910-171910-3.
    22. Qiao, J., et al., Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite. Scripta Materialia, 2009. 61(11): p. 1087-1090.
    23. Qiao, J.W., Y. Zhang, and P.K. Liaw, Tailoring Microstructures and Mechanical Properties of Zr‐Based Bulk Metallic Glass Matrix Composites by the Bridgman Solidification. Advanced Engineering Materials, 2008. 10(11): p. 1039-1042.
    24. SZUECST, F., C. Kim, and W. Johnson, Mechanical properties of Zr56. 2Ti13. 8Nb5. 0Cu6. 9Ni5. 6Be12. 5 ductile phase reinforced bulk metallic glass composite. Acta materialia, 2001. 49(9): p. 1507-1513.
    25. 國立清華大學工程與系統科學系電子顯微鏡中心, http://cem.ess.nthu.edu.tw/Article.asp?ColId=1D2CF1EA179326&id=519BD1310541BF
    26. Lo, Y., et al., Structural relaxation and self-repair behavior in nano-scaled Zr–Cu metallic glass under cyclic loading: Molecular dynamics simulations. Intermetallics, 2010. 18(5): p. 954-960.
    27. Sha, Z., et al., Glass forming abilities of binary CuZr (34, 35.5, and 38.2 at.%) metallic glasses: A LAMMPS study. Journal of Applied Physics, 2009. 105: p. 043521.
    28. Lund, A.C. and C.A. Schuh, Yield surface of a simulated metallic glass. Acta materialia, 2003. 51(18): p. 5399-5411.
    29. Wang, Y., et al., Ductile crystalline–amorphous nanolaminates. Proceedings of the National Academy of Sciences, 2007. 104(27): p. 11155-11160.
    30. Suzuki, H., et al., Evaluation of compressive deformation behavior of Zr55Al10Ni5Cu30 bulk metallic glass containing ZrC particles by synchrotron X-ray diffraction. Scripta Materialia, 2012. 66(10): p. 801.
    31. Yang, L., et al., Nanoscale solute partitioning in bulk metallic glasses. Advanced Materials, 2009. 21(3): p. 305-308.
    32. Kuhn, U., et al., ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Applied physics letters, 2002. 80(14): p. 2478-2480.
    33. http://www.webelements.com/
    34. Huang, E.-W., et al., Slip-system-related dislocation study from in-situ neutron measurements. Metallurgical and Materials Transactions A, 2008. 39(13): p. 3079-3088.
    35. Northwood, D., I. London, and L. Bähen, Elastic constants of zirconium alloys. Journal of nuclear materials, 1975. 55(3): p. 299-310.
    36. Wen, C., et al., Processing of biocompatible porous Ti and Mg. Scripta Materialia, 2001. 45(10): p. 1147-1153.
    37. Antoine, C., M. Foley, and N. Dhanaraj, Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities, 2011, Fermi National Accelerator Laboratory (FNAL), Batavia, IL.
    38. Dolbow, J. and M. Gosz, Effect of out-of-plane properties of a polyimide film on the stress fields in microelectronic structures. Mechanics of materials, 1996. 23(4): p. 311-321.
    39. Farraro, R. and R.B. Mclellan, Temperature dependence of the Young’s modulus and shear modulus of pure nickel, platinum, and molybdenum. Metallurgical and Materials Transactions A, 1977. 8(10): p. 1563-1565.
    40. Narayan, R., et al., On the hardness and elastic modulus of bulk metallic glass matrix composites. Scripta Materialia, 2010. 63(7): p. 768-771.
    41. Clausen, B., et al., Compressive deformation of in situ formed bulk metallic glass composites. Scripta materialia, 2006. 54(3): p. 343-347.
    42. Qiao, J., et al., Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening. Acta Materialia, 2011. 59(10): p. 4126-4137.
    43. Kelchner, C.L., S. Plimpton, and J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085.
    44. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995. 117(1): p. 1-19.
    45. Rawat, S., et al., Effect of material damage on the spallation threshold of single crystal copper: a molecular dynamics study. Modelling and Simulation in Materials Science and Engineering, 2012. 20(1): p. 015012.

    QR CODE
    :::