跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李明師
Ming-Shih Lee
論文名稱: 新穎奈米線穿隧式場效電晶體之技術開發
Technology Development of Novel Naonwire Tunneling Field-Effect Transistor
指導教授: 李佩雯
Pei-Wen Li
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 53
中文關鍵詞: 奈米線PIN奈米線穿隧式場效電晶體次臨限斜率靜態漏電流
外文關鍵詞: Nanowire, PIN, Nanowire Tunneling Field-Effect Transistor, Subthreshold Slope, Static Leakage Current
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文整合一維複晶矽奈米線與PIN結構於一體,實作出奈米線穿隧式場效電晶體。期望能有效地改善金氧半場效電晶體的短通道效應、次臨限斜率與靜態漏電流。其關鍵製程簡述如下:利用側壁回蝕技術在陡直的平台側壁形成一維複晶矽奈米線,再藉由二次黃光微影製程分別對一維複晶矽奈米線進行P+ 和N+ 離子佈植形成PIN結構,進而實作出奈米線穿隧式場效電晶體。因此於變溫的電流-電壓曲線、次臨限斜率-溫度曲線以及導通電流-溫度曲線進行電性分析。


    This thesis integrated one dimension poly-Si nanowire and PIN structure into a device, which fabricated nanowire tunneling field-effect transistor (NWT-FET). We are looking forward to improving short channel effects (SCE), subthreshold slope, (S.S.) and static leakage current (IOFF) in the metal oxide semiconductor field-effect transistor (MOS-FET). The key process of NWT-FET is described as follows: By using etched back technique, we can form one dimension poly-Si nanowire on steep mesa-sidewall. Then by using two photolithography processes, we can implant P+ and N+ on one dimension poly-Si nanowire, respectively, to form the PIN structure. Via the variable temperature measurement (300 K, 250 K, 200 K and 150 K), we experimental characterized the current-voltage (I-V), subthreshold slope-temperature (S.S.-Temp.) and on current-temperature (Ion-Temp.).

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 一、 緒論 1 1-1 研究的背景與動機 1 1-2 奈米線穿隧式場效電晶體的結構設計與製程考量 2 1-3 論文研究流程與架構 4 二、 奈米線穿隧式場效電晶體的操作原理 9 2-1 前言 9 2-2 穿隧理論 9 2-3 元件結構與對應的能帶圖 11 2-4 操作機制 12 2-4-1 元件導通時對應的能帶圖 12 2-4-2 元件截止時對應的能帶圖 13 三、 奈米線穿隧式場效電晶體製程開發與流程 17 3-1 前言 17 3-2 關鍵製程開發 17 3-3 元件製作流程 19 四、 電性量測與分析 38 4-1 前言 38 4-2 奈米線穿隧式場效電晶體之常溫電性分析 38 4-3 奈米線穿隧式場效電晶體之變溫電性分析 41 五、 總結與未來展望 49 參考文獻 50

    ﹝1﹞K. Mistry., “Intel’s Revolutionary 22 nm Transistor Technology”, p. 10, 2011, http://download.intel.com/newsroom/kits/research/2011/pdfs/22nm_Discussion.pdf.
    ﹝2﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 328, 2007.
    ﹝3﹞D. Hisamoto, et al., “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, Vol. 47, p. 2320, 2000.
    ﹝4﹞Y. K. Choi, T. J. King, et al., “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron Device Lett., Vol. 23, p. 25, 2002.
    ﹝5﹞D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling and coherent oscillations in small tunnel junctions,” J. Low Temp. Phys., Vol. 62, p. 1573, 1986.
    ﹝6﹞T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev.Lett., Vol. 59, p. 109, 1987.
    ﹝7﹞H. Graber and M. H. Devoret, “Single charge tunneling: Coulomb blockade phenomena in nanostructures,” New York, Plenum, 1992, NATO ASI Series B 294.
    ﹝8﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 314, 2007.
    ﹝9﹞P.-F. Wang, et al., “Complementary tunneling transistor for low power application”, Solid-State Electronics, Vol. 48, p. 2282, 2004.
    ﹝10﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 418, 2007.
    ﹝11﹞H.-C. Lin, et al., “A Simple and Low-Cost Method to Fabricate TFEs With Poly-Si Nanowire Channel”, IEEE Electron Device Letters, Vol. 26, No. 9, 2009.
    ﹝12﹞J.-P. Colinge, “Silicon-on-insulator Technology: Materials to VLSI”, 3rd Ed, New York, p. 32, 2004.
    ﹝13﹞L. D. Yau, “A simple theory to predict the threshold voltage in short-channel IGFETs”, Solid-State Electronics, Vol. 17, p. 1059, 1974.
    ﹝14﹞Z. H. Liu, et al., “Threshold voltage model for deep submicron MOSFETs”, IEEE Trans. Electron Devices, p. 86, 1993.
    ﹝15﹞Y. Taur & T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, New York, 1998.
    ﹝16﹞J. Singh, et al., “A Novel Si-Tunnel FET based SRAM Design for Ultra Low-Power 0.3V VDD Applications”, IEEE Design Automation Conference, p. 181, 2010.
    ﹝17﹞J. Knoch, et al., “A novel concept for field-effect transistors - the tunneling carbon nanotube FET”, IEEE Device Research Conference Digest, p. 154, 2005.
    ﹝18﹞A. S. Verhulst, et al., “Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor”, Journal of Applied Physics, Vol. 107, p. 2-3, 2010.
    ﹝19﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 91, 2007.
    ﹝20﹞M.-H. Juang, et al., “Formation of polycrystalline-Si thin-film transistors with tunneling field-effect-transistor structure”, Solid-State Electronics, Vol. 518, p. 3980, 2010.
    ﹝21﹞S. A. Dayeh, et al., “Synthesis, Fabrication, and Characterization of Ge/Si Axial Nanowire Heterostructure Tunnel FETs”, IEEE International Conference on Nanotechnology Joint Symposium, p. 3, KINTEX, Korea, 2010.
    ﹝22﹞T. W. Little, et al., “Low Temperature Poly-Si TFTs Using Solid Phase Crystallization of Very Thin Films and an Electron Cyclotron Resonance Chemical Vapor Deposition Gate Insulator”, Journal of Applied Physics, Vol. 30, No. 12B, p. 3724, 1991.
    ﹝23﹞S. M. Sze, Physics of Semiconductor Devices, 3rd Ed, New York: Wiley, p. 104, 2007.
    ﹝24﹞H. Kawaura, “Observation of source-to drain direct tunneling current in 8 nm gate electrically variable shallow junction metal-oxide-semiconductor field-effect transistors”, Journal of Applied Physics, Vol. 76, No. 25, p. 3810, 2000.
    ﹝25﹞T. Nirschl., et al., “The tunneling field effect transistors (TFET): the temperature dependence, the simulation model, and its application”, IEEE Circuits and Systems, p. 714, 2004.
    ﹝26﹞J. Knoch, et al., “Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices”, Solid-State Electronics, Vol. 51, p. 574, 2007.

    QR CODE
    :::