跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林郁芸
Yu-Yun Lin
論文名稱: 次臨界區運算放大器電路之自動化設計
Design Automation for Sub-Threshold Operational Amplifier Circuits
指導教授: 劉建男
Chien-Nan Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 次臨界區兩級式運算放大器類比設計自動化
外文關鍵詞: Sub-threshold, Two-stage-OPA, Design Automation
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今新興的超低功率消耗的應用,越來越受到大家的關注與重視。為了達到超低功率消耗的需求,以延長產品使用時間,次臨界區(Sub-threshold)電路設計提供了一種解決方法,藉由操作在極低電壓 (Vdd<Vth)的方式,可以降低動態功率消耗及漏電流消耗。然而,當電路操作在次臨界區,其電路的特性及設計方式,將完全不同於一般的設計,極需研發新的EDA輔助軟體。本論文提出一套自動化設計次臨界區類比電路的EDA輔助軟體,可以解決不同操作區間及雜訊干擾問題,並使用線性規劃(linear programming)來找尋最佳解,降低類比工程師手動調整電路設計的時間,加快設計時程。由模擬結果的數據觀察可知,本自動化工具產生的放大器電路,確實能根據不同需求找到不同的最佳電晶體尺寸,得到考量放大率、面積、雜訊的最佳解。


    Power has become the primary design constraint for chip designers today. To reduce power and increase service time, low-voltage low-power design becomes more and more important. One of the possible ways to achieve this goal is sub-threshold circuit design. By operating transistors at the region that Vdd is less than the transistor threshold voltage (Vdd<Vth), such kind of sub-threshold designs have low dynamic power dissipation and low leakage current. However, the circuit characteristics and design method in sub-threshold region are different to typical design style. There is an urgent need for new analog EDA tools. In this thesis, an automatic sub-threshold analog EDA tool is presented to generate the required circuits with noise consideration. In this tool, linear programming is adapted to find the optimal solution. It can reduce the manual design time and improve the productivity. According to the simulation results, the automatically generated OPA can meet the requirements of different users and reach the optimal solution with gain, area, and noise consideration.

    摘要------------i Abstract--------ii 致謝------------iii 目錄------------iv 圖目錄----------vi 表目錄----------vii 第一章、緒論-----1 1-1 研究動機-----1 1-2 相關研究-----3 1-2-1 考慮雜訊於電路設計---------3 1-2-2 考慮佈局效應之類比設計自動化工具------4 1-3 問題定義-----5 1-4 論文結構-----6 第二章、背景知識--7 2-1 次臨界區設計--7 2-1-1 次臨界區的設計挑戰-----8 2-1-2 解決方法---9 2-2 電路架構-----12 2-3 電壓驅動設計方法--------14 2-3-1 gm/ID方法--16 2-3-2 限制條件與目標函數----20 2-3-3 取得電晶體尺寸--------22 2-3-4 電壓驅動設計流程------24 第三章、雜訊考量--26 3-1 雜訊型態-----26 3-1-1 射雜訊-----27 3-1-2 閃爍雜訊---28 3-1-3 電路中雜訊的表示-------30 3-2 單級放大器雜訊分析-------31 3-3 兩級式運算放大器雜訊分析--32 3-3-1 第一級雜訊--33 3-3-2 第二級雜訊--36 3-4 目標函數------37 3-4-1 面積目標函數----------37 3-4-2 雜訊目標函數和放大率目標函數--38 第四章、實驗結果與分析-------40 4-1 實驗環境------40 4-2 實驗結果------40 第五章、結論和未來研究方向----44 第六章、參考文獻---45

    [1] V. E, F. J. “CMOS analog integrated circuits based on weak inversion operations.” Journal of Solid-StateCircuits 1977; 12(3):224–231.
    [2] F. LHC, P. TC, M. RL. “An ultra-low-voltage ultra-low-power CMOS Miller OTA with rail-to-railinput/output swing.” IEEE Transactions on Circuits and Systems II 2007; 45(10):843–847.
    [3] S. T, Y. H. “A 0.9-V 0.5-mA rail-to-rail CMOS operational amplifier.” IEEE Journal of Solid-StateCircuits 2002; 37(3):286–292.
    [4] S. C, S. W. “A. Ultra-low-power, class-AB, CMOS four-quadrant current multiplier.” IET ElectronicsLetters 2009; 45(10):483–484.
    [5] E. CC, K. F, V0 EA. “An analytical MOS transistor model valid in all regions of operation and dedicatedto low-voltage and low-current applications.”Analog Integrated Circuits and Signal Processing 1995; 8(1):83–114.
    [6] B. DM, B. BJ, R. JM. “Optimizing drain current, inversion level, and channel length in analogCMOS design.” Analog Integrated Circuits and Signal Processing 2006; 47(2):137–163.
    [7] J. Mahattanakul and J. Chutichatuporn, “Design Procedure for Two-Stage CMOS Op-Amp with Flexible Noise-Power Balancing Scheme,” IEEE Trans. on Circuits and Systems-I: Regular Papers, Aug. 2005; 52(8): 1508-1514.
    [8] S.-Y. Lee, and C.-J. Cheng, “Systematic Design and Modeling of a OTA-C Filter for Portable ECG Detection,”IEEE Trans. on Biomedical Circuits and Systems, Feb. 2009;3(1): 53-64.
    [9] Y.-C.Liao, Y.-L. Chen, X.-T. Cai,C.-N. Jimmy Liu, and T.-C. Chen, “LASER: layout-aware analog synthesis environment on laker,” Proc. ACM International Conference on Great Lakes Symposium on VLSI, 2013; 107-112.
    [10] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, T. Mudge, “Near-Threshold Computing:Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits,” Proc. of the IEEE, Feb. 2010; 98(2): 253 – 266.
    [11] M. R. Valero, S. Celma, N. Medrano, B. Calvo, and C. Azcona, “An Ultralow-Power Low-VolatgeClass-AB Fully Differential OpAmp for Long-Life Autonomous Portable Equipment,” IEEE Trans.Circuits Syst.-II:Exp. Briefs, Oct. 2012; 59(10): 643 – 647.
    [12] M. Salas, A. Micro, “Sub-threshold Design Ambiq and PsiKick Chart a Challenging Path,” Electronic Engineering journal, May . 26, 2014
    [13] A. W.,B. H. C. and A. P. C., “Sub-threshold Design for Ultra Low-Power Systems ,” Springer US,2006.
    [14] L. Magnelli, F. A. Amoroso, F. Crupi, G. Cappuccino and G.Iannaccone, “ Design of a 75-nW, 0.5-V subthreshold complementarymetal-oxide-semiconductor operational amplifier,” Int.J.Circuit TheoryApplication, 2012, DOI, pp. 1-11.
    [15] R. B. Ganta, M. Cai, R. Sobot and K. Fricke, “Design of a 50nW, 0.5VDD sub-threshold OTA amplifier with indirect compensation technique and class AB output stage,”Canadian Conference on Electrical and Computer Engineering, May. 2015.
    [16] Y.-F. Cheng, L.-Y.Chan, Y.-L. Chen,Y.-C.Liao, and C.-N. Jimmy Liu, “A Bias-Driven Approach to Improve the Efficiency of Automatic Design Optimization for CMOS OP-Amps,” Proc. Asia Symposium on Quality Electronic Design, 2012; 59-63,.
    [17] F. Silveria, D. Flandre, P. G. A. Jespers, “A gm/ID Based Methodology for the Design of CMOS Analog Circuits and Its Application to the Synthesis of a Silicon-on-Insulator Micropower OTA,” IEEE Journal of Solid-State Circuits, Sep. 1996; 31(9): 1314-1319,.
    [18] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,McGraw-Hill Higher Education,” 2001
    [19] Y. Nemirovsky, I. Brouk and C.G. Jakobson, “1/f Noise in CMOS Transistors for Analog Applications,” IEEE Electron Devices Society, May 2001.
    [20] A. A. Abidi, “High-Frequency Noise Measurement on FETs with Small Dimensions,” IEEE Trans. Electron Devices, Nov. 1986; 33: 1801-1805,.
    [21] 池俊熙, “低電壓主動式電感低雜訊放大器”, 國立中山大學電機工程學系碩士論文, July 2011.
    [22] R.A Rutenbar., “Emerging Tools for Analog & Mixed-Signal: The Role of Synthesis and Analog Intellectual Property,” DATE master course, 2003.
    [23] 吳宛蓉, “提升可撓式薄膜電晶體之類比電路可靠度的快速自動化設計方法,” 國立中央大學電機工程研究所碩士論文, July 2012.
    [24] 廖于晴,“考慮佈局效應的類比設計自動化工具,”國立中央大學電機工程研究所碩士論文,July 2013.
    [25] 連映琦, “用於生理訊號擷取系統之自動化類比設計平台,” 國立中央大學電機工程研究所碩士論文,July 2014.
    [26] HSPICE® User Guide, Release F-2011.09
    [27] ILOG CPLEXTM from IBM, http://www.ilog.com/products/cplex/
    [28] Blalock BJ, Allen PE, Rincon-Mora GA. “Designing 1-V op amps using standard digital CMOS technology.” IEEE Transactions on Circuits and Systems II 1998; 45(7):769–779.
    [29] Chatterjee S, Tsvidis Y, Kinget P. “0.5-V analog circuit techniques and their application in OTA and filter design.” IEEE Journal of Solid-State Circuits 2005; 40(12):2373–2387.

    QR CODE
    :::