跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許豐如
Feng-Ru Hsu
論文名稱:
Distance-two domination of graphs
指導教授: 廖勝強
Sheng-Chyang Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 94
語文別: 英文
論文頁數: 23
外文關鍵詞: NP complete, domination
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於實際資源分享的問題,我們在此篇論文裡面考量到控制問題的變形,稱為距離二以內的控制問題。
    這篇論文的架構如下。第一節、介紹基本的定義。第二節、研究paths 和cycles之距離二以內的控制。第三節、證明D_{3,2,1}控制問題為NP-complete在二分圖上。第四節、決定fully binary tree 之D_{3,2,1}控制數。


    Due to a practical resource sharing problem, we consider a variation of the domination problem in this thesis which we call the distance-two domination problem.
    This thesis is organized as follows. Section 1 gives basic definitions and notation. Section 2 investigates the distance-two domination of paths and cycles. Section 3 shows that D_{3,2,1}-domination problem is NP-complete for bipartite graphs. And we determine the D_{3,2,1}-domination number of fully binary tree in the final section.

    1Introduction ....................1 2 Distance-two domination of paths and cycles ....................5 3 NP-Complete result ....................7 4 Distance-two domination of fully binary tree ....................11 References ....................15

    References
    [1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Desing and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA (1974).
    [2] G. J. Chang, Algorithmic Aspects of Domination in Graphs, Handbook of Com-binatorial Optimization (D. Z. Du and P. M. Pardalos edited) Vol. 3 (1998),339-405.
    [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Ad-vanced Topics, Marcel Dekker, NY (1998).
    [4] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NY (1998).
    [5] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, Rockville, MD (1978).
    [6] U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA (1989).
    [7] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ (2001).

    QR CODE
    :::