跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周達業
Da-Ya Chou
論文名稱: 神經網路光學電腦
All Optical Neural Networks
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: 光學電腦訊號辨識類神經網路
外文關鍵詞: All optical computing, Signal recognition, Artificial neural networks
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是透過光通訊模擬軟體來設計出Echo State Network(ESN)之結構,在結構中的類神經元都是由光纖、兩個耦合器和摻鉺光纖放大器所組成,並用於處理與時間有關的數據,使其能夠分辨訊號。本論文將改變類神經元接法、數目,或者輸入的光源,並以NRMSE來當作辨別訊號能力的好壞,來找尋一個最好的結構。


    The main purpose of this paper is to design the structure of Echo State Network (ESN) through optical communication simulation software. Our structure uses several neurons. The neuron is composed of optical fibers, two couplers and erbium-doped fiber amplifiers (EDFA). We use structure to deal with time-related data, so that it can recognize the signal. This paper will change the connection of neurons, the number of neurons, or the input light source. We use NRMSE to identify the ability of the signal is good or bad, to find a best structure.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章、序論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 結論 3 第二章 基礎理論介紹 4 2.1 類神經網路 4 2.1.1 類神經網路歷史 4 2.1.2 類神經網路之模型 5 2.1.3 Echo State Network 7 2.2 光通訊軟體(Optsim)介紹 8 2.3 光通訊元件之介紹 9 2.3.1 摻鉺光纖放大器之介紹 9 2.3.2 耦合器(2x2)之介紹 11 2.3.3 相位調製器之介紹 11 2.3.4 馬赫詹德調變器 12 2.4 歸一化方均根誤差 13 2.5 結論 13 第三章 研究方法 13 3.1 設計結構之目的 14 3.2 輸入光源之設計 15 3.3 類神經元之設計 16 3.4 輸出權重值之計算 18 3.5 輸出理論值之定義 20 3.6 模擬流程 21 3.7 結論 21 第四章 模擬結構設計與比較 22 4.1 神經元的Feedback訊號接法不同之比較 22 4.1.1 獨立神經元之結構 22 4.1.2 交錯神經元之結構 25 4.1.3 小結 28 4.2 神經元的數目不同之比較 28 4.2.1 四組神經元結構 29 4.2.2 八組神經元架構 33 4.2.3 小結 37 4.3 輸入光源對結構之影響 38 4.3.1 不同雷射強度之比較 38 4.3.2 雷射頻寬之影響 40 4.3.3 小結 44 4.4 結論 44 第五章 結論與建議 46 5.1 總結 46 5.2 未來工作 47 參考文獻 48 附錄 51

    [1] D. Silver, A. Huang, et al, “Mastering the game of go with deep neural networks and tree search,” Nature 529(7857), 484 (2016).
    [2] N. Baba, and M. Kozakai, “An intelligent forecasting system of stock price using neural networks,” IJCNN 92, 371 (1992).
    [3] D. J. Burr, “Experiments on neural net recognition of spoken and written text,” IEEE Trans. On ASSP. 36, 1162 (1988).
    [4] H. Jaeger, “The ‘echo state’ approach to analysing andtraining recurrent neural networks,” GMD Report 148, German National Research Center for Information Technology, (2001).
    [5] L. Larger, et al, “Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing,” Opt. Exp. 20, 3241 (2012).
    [6] Y. Paquot, et al, “Optoelectronic reservoir computing,” Sci. Rep. 2, 287 (2012).
    [7] D. Woods and T. J. Naughton, “Photonic neural networks”, Nature Physics 8, 257 (2012).
    [8] S. Ortín, et al, “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron,” Sci. Rep. 5, 14945 (2015).
    [9] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks,” IEEE International Joint Conference on Neural Networks 2, 985 (2004).
    [10]羅華強, “類神經網路-MATLAB的應用,” 高立圖書有限公司, (2005).
    [11]蔡瑞煌, “類神經網路概論,” 三民書局, (1995).
    [12]葉怡成, “類神經網路模式應用與實作,” 儒林圖書有限公司, (1995).
    [13] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proceedings of the National Academy of Sciences of the USA 79(8), 2554 (1982).
    [14] Y. Chauvin and D. Rumelhart, “Backpropagation: theory, architectures, and applications,” Hillsdale: HJ: Lawrence Erlbaum, (1995).
    [15] D. S. Broomhead, D. Lowe, “Multivariable functional interpolation and adaptive networks,” Complex Systems 2(3), 321 (1988).
    [16] R. J. Williams and D. Zipser, “A Learning Algorithm for Continually Running Fully Recurrent Neural Networks,” Neural Computation 1, 270 (1989).
    [17] J. Steil, “Memory in backpropagation–decorrelation: O(N) efficient online recurrent learning,” In Proceedings of the International Conference on Artificial Neural Networks 3697 ,649 (2005).
    [18] W. Maass, T. Natschlaeger, and H. Markram, “Real-time computing without stable states: a new framework for neural computation based on perturbations,” Neural Computation 14(11), 2531 (2002).
    [19] M. Lukoševičius, “A practical guide to applying echo state network,” Neural Networks: Tricks of the Trade 7700, 659 (2012).
    [20] M. Lukoševičius, H. Jaeger, ”Reservoir computing approaches to recurrent neural network training,” Computer Science Review 3, 127 (2009).
    [21]張育誠, “Prediction of sensory input using echo state network,” 碩士論文, 國立中正大學電機工程研究所, (2011).
    [22]鄒志偉, “光纖通訊,” 五南圖書, (2011).
    [23]陳瑞鑫,陳鴻仁和林依恩, “光通訊原理與技術,” 金華科技圖書股份有限公司, (2004).
    [24]Synopsys, Inc. “OptSim Models Reference Volume II Block Mode.”

    QR CODE
    :::