跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝秉峰
Ping-Fong Hsieh
論文名稱: 多載量AGV在協力式無人搬運車系統上的設計
指導教授: 何應欽
Ying-Chin Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 88
語文別: 中文
論文頁數: 94
中文關鍵詞: 協力式無人搬運車系統轉運站設立機器分群多載量機器排列工作量預估區域排列
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本研究將包含為三大部份:第一部份是本研究緒論以及相關於本研究的文獻探討。第二部份將提出多載量AGV在協力式無人搬運車系統的設計方法,。第三部份為模擬實驗及程式撰寫,以證明設計方法的績效。


    第一章緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目地 3 1.4 假設環境 5 1.5 論文架構 5 第二章文獻回顧 8 2.1 機器與零件分群 9 2.1.1 群組技術 9 2.1.2 其他相關機器分群方法 12 2.2工作量預估法 13 2.3 機器排列 15 2.4 區域佈置 17 2.5 轉運站的設立 20 第三章系統設計方法 22 3.1 衡量多載量AGV負載能力 24 3.2 起始分區法 24 3.2.1 起始機器分派法 25 3.2.2 分派剩餘機器 27 3.2.2.1 機器分派法(一) 27 3.2.2.2 機器分派法(二) 29 3.2.3 分派工件 33 3.3 區域平衡調整法 33 3.3.1分區解評量法 34 3.3.1.1 區域工作負載量計算 34 3.3.1.2 工作量評估準則 35 3.3.1.3 轉運量評估準則 37 3.3.1.4 分區解值 38 3.3.2 鄰近解搜尋法 38 3.3.3 平衡過程 38 3.4 機器排列 39 3.4.1 機器排列法 39 3.4.2 改善步驟 41 3.4.3 機器排列距離 42 3.5 區域佈置 43 3.5.1 區域排列 44 3.5.1.1 區域資訊分析 44 3.5.1.2 區域排列步驟 45 3.5.1.3 評估結果 45 3.5.2 單迴圈機器的設立 46 3.5.2.1 計算說明 46 3.5.2.2 模型建立 48 3.6 轉運站設立 49 3.6.1 軌道及轉運站特性 49 3.6.2 模型建立 50 第四章 模擬實驗與分析 54 4.1 多載量AGV負載能力模擬實驗 54 4.1.1 模擬環境與假設 54 4.1.2 實驗項目 55 4.1.3 結果分析 57 4.2 區域設計實驗 60 4.2.1 實驗資料 60 4.2.2 區域劃分 61 4.2.3 分區改善演算法 63 4.2.4 機器排列 68 4.2.5 區域佈置 75 4.2.5.1 分析區域資訊 75 4.2.5.2 排列步驟 77 4.2.6 單迴圈機器及轉運站設立位置 79 第五章 結論與後續研究 83 5.1 結論 83 5.2 後續研究及相關建議 84 參考文獻 85 附錄A 89 附錄B 90 附錄C 91 附錄D 93

    Apple, J. M., “Plant layout and material handling,” 3rd ed” John Wiley, New York, 1977
    Apple, J. M., “Plant layout and material handling,” 3rd ed” John Wiley, New York, 1977
    Apple, J. M., “Plant layout and material handling,” 3rd ed” John Wiley, New York, 1977
    Doaghey, C. E. and Pire, V. F., 1990, “Solving the facility layout problem with BLOCPLAN,” Industrial Engineering Department, University of Houston, TX.
    Egbelu, P.J., 1987, ” The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle base transport system,” Material Flow, Vol. 4, pp. 17-32
    Ho, Y. C. and Moodie, C. L., ” A hybrid approach for concurrent layout design of cells and their flow paths in a tree configuration,” School of Industrial Engineering Purdue University
    Ho, Y. C. and Moodie, C. L., ” A hybrid approach for concurrent layout design of cells and their flow paths in a tree configuration,” School of Industrial Engineering Purdue University
    Ho, Y. C. and Moodie, C. L., ” A hybrid approach for concurrent layout design of cells and their flow paths in a tree configuration,” School of Industrial Engineering Purdue University
    Ho, Y. C. and Moodie, C. L., 1998, ”Machine layout with a linear single-row flow path in an automated manufacturing system,” Journal of Manufacturing System, Vol. 17, No. 1, pp. 1-22
    Ho, Y. C. and Moodie, C. L., 1998, ”Machine layout with a linear single-row flow path in an automated manufacturing system,” Journal of Manufacturing System, Vol. 17, No. 1, pp. 1-22
    Ho, Y. C. and Moodie, C. L., 1998, ”Machine layout with a linear single-row flow path in an automated manufacturing system,” Journal of Manufacturing System, Vol. 17, No. 1, pp. 1-22
    Ho, Y. C. and Moodie, C. L., 1998, ”Machine layout with a linear single-row flow path in an automated manufacturing system,” Journal of Manufacturing System, Vol. 17, No. 1, pp. 1-22
    Huang, C., 1997, ”Design of material transportation system for tandem automated guided vehicle systems,” International Journal of Production Research, Vol. 35, No. 4, pp.943-953
    Huang, C., 1997, ”Design of material transportation system for tandem automated guided vehicle systems,” International Journal of Production Research, Vol. 35, No. 4, pp.943-953
    Huang, C., 1997, ”Design of material transportation system for tandem automated guided vehicle systems,” International Journal of Production Research, Vol. 35, No. 4, pp.943-953
    Kusiak, A., 1987, ”The generalized group technology concept,” International Journal of Production Research, Vol. 25, No. 4, pp.561-569
    Kusiak, A., 1987, ”The generalized group technology concept,” International Journal of Production Research, Vol. 25, No. 4, pp.561-569
    Kusiak, A., 1987, ”The generalized group technology concept,” International Journal of Production Research, Vol. 25, No. 4, pp.561-569
    Kusiak, A., 1987, ”The generalized group technology concept,” International Journal of Production Research, Vol. 25, No. 4, pp.561-569
    Montreuil, B., Chhajed, D. and Lowe,T. J., 1992, “Flow network design for manufacturing system layout,” European Journal of Operational Research, Vol. 57, pp.145-161
    Montreuil, B., Chhajed, D. and Lowe,T. J., 1992, “Flow network design for manufacturing system layout,” European Journal of Operational Research, Vol. 57, pp.145-161
    Muther, R. , 1973 , “Systematic layout planning,” 2nd ed” Cahners Books, Boston
    Muther, R. , 1973 , “Systematic layout planning,” 2nd ed” Cahners Books, Boston
    Muther, R. , 1973 , “Systematic layout planning,” 2nd ed” Cahners Books, Boston
    Rajotia, S., Shanker, K. and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, Vol. 36, No. 5, pp.1177-1198
    Rajotia, S., Shanker, K. and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, Vol. 36, No. 5, pp.1177-1198
    Rajotia, S., Shanker, K. and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, Vol. 36, No. 5, pp.1177-1198
    Rajotia, S., Shanker, K. and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, Vol. 36, No. 5, pp.1177-1198
    Rajotia, S., Shanker, K. and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, Vol. 36, No. 5, pp.1177-1198
    何應欽、陳德祥 1999 “整合性協力式無人搬運車系統之設計方法,”中國工業工程學會八十八年年會, 台灣新竹(清華大學)。

    QR CODE
    :::