跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐承瑋
Cheng-Wei Hsu
論文名稱: 牙齒掃描機光學系統設計
指導教授: 孫文信
Wen-Shing Sun
梁肇文
Chao-Wen Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 161
中文關鍵詞: 牙齒掃描機DLP投影系統景深取像分析製造公差分析均勻度與效率分析LED準直鏡透鏡陣列DMD投影鏡組
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為牙齒掃描機光學系統設計包括投影系統與取像系統,主要是把立體結構圖利用投影系統投射於待側面(牙齒)上,並用取像系統透過電腦模擬成牙齒3D立體結構圖。投影系統包含非成像系統設計與成像系統設計,非成像系統以DLP微型投影機架構分別設計三顆RGB LED、三組準直鏡系統、兩片色彩分光鏡、透鏡陣列、中繼透鏡、TIR稜鏡與DMD所組成,成像系統包含DMD、TIR稜鏡之投影鏡頭投射至待側面(牙齒)上。
      光源選用Osram RGB LED,其光通量共輸出為2754.21 lm,在待側面(牙齒)上效率14.82%,光通量輸出為408.1 lm。
      成像系統由六片玻璃透鏡所組成,F/#為2.4,其成像品質MTF(66 lp/mm) 0.579,光學畸變絕對值 1.4%,橫向色差絕對值 0.55 m,相對照度94.175%。
      取像系統設計由三片玻璃球面鏡片所組成,F/#為8、物像距離為187 mm、工作距離為150 mm、景深為7.5 mm。當工作距離為150 mm,則在待側面取像的解析度874 dpi ; 工作距離為142.5 mm,則在待側面取像的解析度206 dpi ;工作距離為157.5 mm,則在待側面取像的解析度240 dpi。
      最後本文牙齒掃描機整體架構體積約為80 mm  62 mm  28 mm。


      This paper designs the optical system of the dental scanner including the projection system and the image capturing system. The main purpose is to project the three-dimensional structure drawing onto the side (tooth) by the projection system, and simulate the 3D three-dimensional structure of the tooth through the computer with the image capturing system. The projection system includes non-imaging system design and imaging system design. The non-imaging system designs is consisting of three RGB LEDs, three sets of collimating mirror systems, two color spectroscopes, lens arrays, retardation lenses, and TIR prism in the DLP pico-projector architecture, the DMD, the imaging system includes a DMD, TIR prism projection lens projected onto the side (tooth).
      The light source uses Osram RGB LED, the efficiency on the side (tooth) is 14.82%, and the luminous flux output is 408.1 lm.
      The imaging system consists of six glass lenses with F/# of 2.4, imaging quality MTF (66 lp/mm) is 0.579, Absolute value of optical distortion is 1.4%, absolute value of lateral chromatic aberration is 0.55 m, relative contrast is 94.175 %.
      The imaging system design consists of three glass spherical lenses with an F/# of 8, an object image distance of 187 mm, a working distance of 150 mm and a depth of field of 7.5 mm. When the working distance is 150 mm, the resolution of the image to be taken on the side is 874 dpi; the working distance is 142.5 mm, the resolution of the image to be taken on the side is 206 dpi; the working distance is 157.5 mm, and the resolution of image to be taken on the side is 240 dpi.
      Finally, the overall structure of the dental scanner is about 80 mm  62 mm  28 mm.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 投影機之研究發展史 1 1-3 文獻回顧 7 1-4 研究動機與目標 10 1-5 論文架構 11 第二章 傳統DLP投影機架構 12 2-1 基本原理與系統架構簡介 12 2-2 各項系統 13 2-2-1 光源系統 13 2-2-2 色彩系統 15 2-2-3 中繼系統 16 2-2-4 DMD系統與TIR稜鏡 18 2-2-5 成像系統 22 第三章 牙齒掃描機光學系統設計 24 3-1 系統架構簡介與基本原理 24 3-2 光源系統 24 3-2-1 LED光源規格 25 3-2-2 準直鏡組設計 27 3-2-3 色彩分光鏡 ( Dichroic filter) 30 3-3 透鏡陣列 32 3-3-1 單格透鏡入光面曲率半徑 33 3-3-2 單格透鏡出光面曲率半徑 34 3-3-3 單格透鏡有效焦距EFLla 35 3-3-4 單格矩形透鏡口徑尺寸、矩形透鏡垂直方向與水平方向的NA值與出射角度 36 3-4 中繼透鏡 38 3-4-1 中繼透鏡初階規格 – 水平方向 39 3-4-2 中繼透鏡初階規格 – 垂直方向 41 3-4-3 中繼透鏡整體規格 42 3-5 TIR稜鏡 45 3-5-1 入射至DMD上的角度計算 46 3-5-2 TIR與DMD工作原理 47 3-6 成像系統 50 3-6-1 成像光軸修正 50 3-6-2 成像系統設計 53 3-6-3 成像系統設計結果 58 3-6-4 成像系統品質分析 60 3-7 取像系統 80 3-7-1 取像感測器 81 3-7-2 取像系統設計 81 3-7-3 取像系統設計結果: 83 3-7-4 取像系統品質分析: 84 第四章 牙齒掃描機光學效率與均勻度 96 4-1 導論 96 4-2 光展量(ÉTENDUE)定義與立體角的光展量値 97 4-2-1 光展量(Étendue)定義 97 4-2-2 不同立體角之光展量 99 4-3 光展量計算 104 4-3-1 LED光展量計算 104 4-3-2 準直鏡光展量計算 105 4-3-3 透鏡陣列光展量計算 107 4-3-4 中繼透鏡STOP區域光展量計算 108 4-3-5 投影鏡組光展量計算 108 4-4 牙齒掃描機光學系統光展量表與效率分析 109 4-5 牙齒掃描機非成像系統模擬分析 110 4-5-1 牙齒掃描機非成像系統Layout 110 4-5-2 牙齒掃描機非成像系統均勻度模擬分析 111 4-6 牙齒掃描機投影系統模擬分析 117 4-6-1 牙齒掃描機投影系統Layout 117 4-6-2 牙齒掃描機投影系統效率模擬分析 117 4-6-3 牙齒掃描機投影系統均勻度模擬分析 118 第五章 結論及未來展望 123 5-1 結論 123 5-2 未來展望 124 參考資料 125 附錄一 129 附錄二 132 附錄三 136 附錄四 138 附錄五 142

    [1] Texas Instruments (TI), “DLP® Discovery Optics 101 Application Note,” http://focus.ti.com/lit/an/dlpa022/dlpa022.pdf.
    [2]作者不祥, “CRT、LCD、DLP及LCOS投影技術優勢對比,” https://read01.com/ePRO83.html.
    [3] Jui-Wen Pan and Sheng-Han Lin, “Achromatic design in the illumination system for a mini projector with LED light source,” Opt. Express 19(17), 15652–16721 (2011).
    [4] Michael G. Robinson, Jianmin Chen, Gary D. Sharp, “Three-panel LCOS projection systems,” Journal of the SID 14(3), 303-309 (2006).
    [5] Yi-Hsin Lin, Ming-Syuan Chen, Hung-Chun Lin, “An electrically tunable optical zoom system using two composite liquid crystal lenses with a large zoom ratio,” Opt. Express 19, 4714-4721 (2011).
    [6]Chong-Min Chang, Han-Ping D. Shieh, “Design of illumination and projection optics for projectors with single digital micro-mirror devices,” Appl. Opt. 39(19), 3202-3208 (2000).
    [7]PIDA(光電科技工業協進會), “第五章投影機光學元件,” www.pida.org.tw/report/2004/08/0412-Ch5.pdf.
    [8] Matthew S. Brennesholtz, Edward H. Stupp, Projection displays, (John Wiley and Sons Ltd, 1999).
    [9]陳時偉,「數位光源處理投影系統之光學設計與光機模擬」,元智大學電機工程研究所,碩士論文,民國91年6月。
    [10] M. R. Douglass, “Lifetime Estimates and Unique Failure Mechanisms of the Digital Micro-mirror Device (DMD),” Texas Instruments Inc., Dallas, Texas, 1998.
    [11]德州儀器亞洲區DLP 事業部門提供,DLP™技術概要,2003年9月號, http://www.ti.com.tw。
    [12]馬超慧,「口袋型LED投影系統之光路設計」,中央大學光電研究所,碩士論文,民國99年7月。
    [13]OSRAM, “ LE B, LE CG, LE R, Q8WP,” https://www.osram.com/os/products/led-general-lighting/general_lighting_products.jsp.
    [14] W. J. Smith, “Prism and Mirror Systems,” in Modern Optical Engineering, 4th ed., McGraw-Hill, (2008), pp.619–621.
    [15] Code V Tolerancing Reference Manual, Synopsys Inc., Version 11.1, Ch. 1, 2018.
    [16] Janostech, “Understanding Optical Specifications,” www.janostech.com/knowledge-center/optical-reference-guide/understanding-optical-specifications.html
    [17] John Macdonald, Geometrical Optic and Optical Design, (Oxford University Press, 1997), Chap. 5.
    [18] A. V. Arecchi, T. Messadi, and R. J. Koshel, Field Guide to Illumination, SPIE Press, Bellingham, WA (2007).
    [19] KobaWiki, “solid angle,” http://be.nucl.ap.titech.ac.jp/~koba/cgi-bin/moin.cgi/%E7%AB%8B%E4%BD%93%E8%A7%92
    [20] H. C. Burstyn, D. Meyerhofer, and P. M. Heyman, “The design of high-efficiency high-resolution projectors with the digital micro-mirror device,” in SID ’94 International Symposium Digest of Technical Papers (Society for Information Display,1994), pp. 677-910.
    [21] G. Harbers, M. Keuper, and S. Paolini, “High power LED illuminators for data and video projector displays,” in Proceeding of Internal Display Workshop, IDW, PP. 501 -504 (2002).
    [22] J. W. Pan, C. M. Wang, H. C, Lain, W. S, Sun, and J. Y. Chang, “Homogenized LED-illumination using micro-lens arrays for a pocket-sized projection,” Opt. Express 15, 10483-10491 (2007).
    [23] J. W. Pan, C. M. Wang, W. S, Sun, and J. Y. Chang, “Portable digital micro-mirror device projector using a novel prism,” Appl. Opt. 46(22), 5097-5102 (2007).
    [24] M.H. Keuper, G. Harbers, and S. Paolini, “RGB LED illuminators for Pocket-sized Projectors,” in SID’04 International Symposium Digest of Technical Papers (Society for Information Display, Santa Ana, Calif.,) 943-945 (2004).
    [25] G . H. Moss, R. G. Fielding, M. Kavanagh, and B.R. Critchley, “A high-luminance large-screen projection system using the digital micro-mirror device (DMD),” in SID’96 International Symposium Digest of Technical Papers (Society for Information Display, 1996), pp. 907-910.
    [26] J. W. Bowron and R. P. Jonas, “Off-axis illumination design for DMD system,” Proc. SPIE 5186,72-82 (2003).
    [27] G. Harbers, M. Keuper, and S. Paolini, “Performance of high power LED illuminators in color sequential projection displays,” in Proceeding of Internal Display Workshop (IDW,2003) pp. 1585-1589.
    [28] W. S. Sun, P. Y. Chu, C. L. Tien, and M. F. Chung, “Zoom lens design for 10.2-megapixel APS-C digital SLR cameras,” Appl. Opt. 56(3), 446–456 (2010).

    QR CODE
    :::