| 研究生: |
謝吉修 Jie-shiou Hsieh |
|---|---|
| 論文名稱: |
GPS即時動態定位最佳化演算法比較研究 A Comparative Study of Optimal Algorithmsfor Real-Time Kinematic GPS Positioning |
| 指導教授: |
吳究
Joz Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系在職專班 Executive Master of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 全球衛星定位系統 、方差分量估計 、解關聯 |
| 外文關鍵詞: | Decorrelation, BIQUE, GPS, Variance Component |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用GPS衛星訊號的觀測量進行即時動態定位,在有限的單時刻訊號觀測量數據與極短時間內要完成動態定位演算,最大的困難即是整數相位模稜(Phase Ambiguity)、幾何坐標分量與電離層延遲之間參數高相關的問題,造成整數相位模稜值非常不易正確求解。本論文研究即在探討如何使參數與觀測式間,組合最佳化之演算工作模式,並應用方差無偏差估計技術-- BIQUE估計式,估計方差分量,使訊號觀測量數據回饋提供最佳化無偏差之先驗資訊,讓隨機模式能更接近事實,以強化解關聯演算技術之工作效能,使整數相位模稜估計求解正確且更具效率。並引用卡曼濾波器進一步探討附加參數對幾何定位之影響與效益,期獲得最佳之精確定位成果。
Using GPS data for real-time kinematic differential positioning, the most difficulty is to solve high correlation between ambiguities, geometry and ionospheric parameters. Precise estimation of GPS phase ambiguity integer is a key. In this study, some possible enhancements which try to take advantage of the structure between the parameters and double-differenced observation equations in the data processing will be given, and take an algorithm of variance and covariance component unbiased estimation — BIQUE. Let the stochastic model close to truth, and fast solve integer phase ambiguity resolution while a decorrelation method is applied. This study will discuss how to increase the parameters to geometry position effectively when the Kalman filter is used.
內政部,1998.「應用全球定位系統實施台閩地區基本控制點測量計畫總報告」,台北。
吳究、李邱德,1995.「GPS衛星測量載波相位模稜固定法之研究」,中國土木水利工程學刊,第七卷,第四期,第523-531頁。
林修國,1997.「模稜求定與時鐘偏差估計應用於衛星相對定位與姿態求解」,博士論文,國立中央大學大氣物理研究所,中壢。
徐浩雄,2000.「白化濾波應用於GPS動態衛星測量之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
黃昭銘,2001.「消去GPS相位模稜OTF相對定位之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
曾清凉,1999.「GPS衛星測量原理與應用」,國立成功大學衛星資訊研究中心,台南。
蔡忠明,2002.「參數解關聯應用在GPS雙主站相位模稜求解」,碩士論文,國立中央大學土木工程研究所,中壢。
Euler, H. J. and C. Goad, , 1991. “On Optimal Filter of GPS Dual Frequency Observations without Orbit Information,” Bulletin Géodésique, Vol. 65, No. 2, pp. 130-143.
Frei, E. and G. Beutler, 1990. “Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach ‘FARA’: Theory and First Results,” Manuscripta Geodaetica, Vol. 15, No. 6, pp. 325-356 .
Goad C. C. and M. Yang ,1997. “A New Approach to Precision Airborne GPS Positioning for Photogrammetry,” Photogrammetric Engineering & Remote Sensing, Vol. 63, No. 9, pp.1067-1077.
Grafarend, E. W.,2000. “Mixed Integer-Real Valued Adjustmemt(IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm,” GPS Solutions, Vol. 4, No. 2, pp. 31-44.
Helmert, F. R., 1924. Die Ausgleichungsrechnug nach der Methode der kleinsten Quadrate. 3. Auflage. Teubner, Leipzig.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, 1997. Global Positioning System Theory and Practice, Springer-Verlag, Wien .
Horemuž M. and L. E. Sjöberg ,2002. “Rapid GPS ambiguity resolution for short and long baseline,” Journal of Geodesy, Vol. 76: pp. 381-391.
Koch, K. R., 1980. Parameterschätzung und Hypothesentests in linearen Modellen, Dümmler, Bonn.
Koch, K. R., 1999. Parameter Estimation and Hypothesis Testing in Linear Models, Springer, Berlin Heidelberg New York.
Kuang, D., B. E. Schutz, and M. M. Watkins, 1996.“On the Structure of Geometric Positioning information in GPS Measurements,” Journal of Geodesy, Vol. 71, pp. 35-43.
Leick, A., 1995. GPS Satellite Surveying, Second Edition, John Wiley and Sons, New York.
Liu, L. T., H. T. Hsu, Y. Z. Zhu, and J. K. Ou, 1999.“A new approach to GPS ambiguity decorrelation,” Journal of Geodesy, Vol. 73, pp. 478-490.
Mertikas, S.P. and C. Rizos ,1997. “On-Line Detection of Abrupt Changes in the Carrier-Phase Measurements of GPS,” Journal of Geodesy, Vol.71,No.8, pp.469 -482 .
Mikhail, E. M.,1976. Observations and Least Squares, University Press of America, Lanham New York London.
Mohamed, A. H. and K. P. Schwarz, 1998. “A Simple and Economical Algorithm for GPS Ambiguity Resolution on the Fly Using Whitening Filter,” Navigation, Vol. 45, NO. 3, pp. 221-231.
Rao, C. R. and S. K. Mitra, 1971. Generalized Inverse of Matrices and its Applications. Wiley,New York.
Seeber,G., 1993. Satellite Geodesy: Foundations, Methods and Application. , Walter de Gruyter, Berlin, New York.
Snyder, J. P., 1987. “Map Projections – A Working Manual,” U.S. Geological Survey Profrssional Paper 1393, Washington.
Teunissen, P. J. G., 1995. “The Least-Squares Ambiguity Decorrelation Adjustment : a Method for Fast GPS Integer Ambiguity Estimation,” Journal of Geodesy, Vol. 70, pp. 65-82.
Teunissen, P. J. G. and A. Kleusberg, 1996. “GPS Observation Equations and Positioning Concepts,” In: Kleusberg, A. And P. J. G. Teunissen (eds), GPS for Geodesy, Lecture Notes in Earth Sciences, Vol. 60, No. 5, Springer-Verlag, Berlin, pp.175-217.
Teunissen, P. J. G., P. J. De Jonge, and C. C. J. M. Tiberius, 1997. “Performance of the LAMBDA Method for Fast GPS Ambiguity Resolution,” Journal of The Institute of Navigation,Vol. 44, No. 3, pp. 373-383.
Teunissen, P. J. G., 1998. GPS for Geodesy, Delft University of Technology, Delft The Netherlands.
Wang, J., M. P. Stewart, and M. Tsakiri, 1998. “Stochastic Modeling for Static GPS Baseline Data Processing,” Journal of Surveying Engineering, ASCE, Vol. 124, No. 4, pp. 171-181.
Wu, J. and S. G. Lin, 1997. “Kinematic Positioning with GPS Carrier Phases by Two Types of Wide Laning,” Navigation, Vol. 44, No. 4, pp. 471-477.
Xu, P., 2001. “Random Simulation and GPS Decorrelation,” Journal of Geodesy, Vol. 75, pp. 408-423.