| 研究生: |
李英信 Inn-Xin Li |
|---|---|
| 論文名稱: |
蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體 The Inverted-Staggered a-SiGe:H Thin-Film Transistors with Schottky Source/Drain Contacts |
| 指導教授: |
洪志旺
Jyh-Wong Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 非晶質矽化鍺薄膜電晶體 、蕭特基 、熱退火處理 |
| 外文關鍵詞: | a-SiGe:H TFTs, Schottky, annealing |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為研製具蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體。在第一階段中,我們成左漣Q用一層很薄的銻金屬改善鋁或鈀和非晶質矽化鍺接面的接觸電阻。由實驗中發現,加入一層薄的銻金屬,可以增加界面導電的穩定性。再經過適當的退火處理後,更可降低接觸電阻達十五萬倍之多(6.23 x 102 Ω-cm2 (Al/Pd/i-a-SiGe:H)降低至4 x 10-3Ω-cm2 (Al/Pd/Sb//i-a-SiGe:H))。
我們也順利地製作出利用鋁/銻雙層金屬作為源/汲極的蕭特基接觸非晶質矽化鍺薄膜電晶體(a-SiGe:H TFT)。實驗結果顯示,當通道層加入越多鍺元素,電晶體的臨界電壓下降及飽和電流提昇。而且,適當的熱退火處理可以改善薄膜電晶體的特性。一般而言,最佳的熱退火處理溫度與時間隨著通道鍺含量的增加而下降與縮短。
最後我們也比較i-, n+- 及grading i-a-Si0.89Ge0.11:H薄膜電晶體的性能,發現grading i- a-Si0.89Ge0.11:H薄膜電晶體在導通飽和電流與臨界電壓等方面具有較好的特性。
We had fabricated the Schottky source/drain (S/D) inverted-staggered a-SiGe:H TFT successfully. The contact resistance of Al or Pd and a-SiGe:H interface was improved by employing a very thin Sb layer for better ohmic contact. It was observed that using a very thin Sb layer before the Al or Pd metal deposition could enhance the stability of the current transport in the metal/semiconductor (i-a-SiGe:H) interface, also, after an appropriate low-temperature annealing process the specific contact resistance could be significantly reduced 1.5x105 times (from 6.23x102Ω-cm2 (Al/Pd/i-a-SiGe:H) to 4x10-3Ω-cm2 (Al/Pd/Sb/i-a-SiGe:H)).
The Schottky inverted-staggered a-Si1-xGex:H S/D TFTs (with Al/Sb dual metal films) have been fabricated successfully. The experimental results indicated that threshold voltage of TFT decreased and its saturation current increased with the increasing Ge content of a-Si1-xGex:H channel layer. Also it was observed that an optimal annealing process could be employed to improve the device performance, and generally, the optimal annealing temperature and duration decreased with the Ge content of a-Si1-xGex:H layer channel layer.
Finally, the performances of Schottky S/D i-, n+-, and graded i- a-Si0.89Ge0.11:H TFTs were compared, and it was found that the graded i-a-Si0.89Ge0.11:H one had the best characteristics of ON drain saturation current and threshold voltage.
[1] LEComber P. G., Spear W. E., and Ghaith A., “Amorphous-silicon field-effect device and possible application”, Electronics Lett., vol. 15, pp. 179, 1979.
[2] Thomson M. J., Johnson N. M., Moyer M. D., and Lujan R., “Thin-film transistors on a-Si:H”, IEEE Trans. Electron Devices, vol. 29, pp. 1643-1646, 1982.
[3] Japanese Technology Evaluation Center, “Display technologies in Japan”, June 1992.*Source://http://itri.Loyola.edu/dsply_jp/toc.htm
[4] Chen C. Y. and Kanicki J, “High field-effect-mobility a-Si:H TFT based on high deposition-rate PECVD material”, IEEE Electron Device Lett., vol. 17, pp. 437-439, 1996.
[5] Lin J. L., Sah W. J., and Lee S. C., “Amorphous-silicon thin-film transistors with very high field-effect mobility”, IEEE Electron Device Lett., vol. 12, pp. 120-121, 1991.
[6] Fukui H., Minoru F., and Hoh Koichiro, “Single-electron transistor in silicon-on-insulator with Schottky-contact tunnel barriers”, Jpn. J. Appl. Phys., vol.36, pp. 4147-4150, 1997.
[7] Rishton S. A., Ismail K., Chu J. O., and Chan K., “An MOS transistor with Schottky source/drain contacts and a self-aligned low-resistance T-gate”, Microelectronic Engineering, vol. 35, pp. 361-363, 1997.
[8] Wang C., Snyder J. P., Tucker J. R., “Sub-40 nm Pt-Si Schottky source/drain metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett., vol. 74, pp. 1174, 1999.
[9] Nishika M. ,and Asano T., “Reduction of the floating body effect in SOI MOSFETs by using Schottky source/drain contacts”, Jpn. J. Appl. Phys., vol, 37, pp.1295, 1998.
[10] Zhao Q. T., Klinkhammer F., Dolle M., Kappius L., and Mantal S., “A novel silicide nanopatterning method for the fabrication of ultra-short channel Schottky-tunneling MOSFETs’”, Microelectronic Engineering, vol. 50, pp. 133-138, 2000.
[11] King T. J., and Saraswat K. C., “Polycrystalline silicon-germanium thin-film transistors”, IEEE Electron Devices, vol. 41, pp. 1581-1591, 1994.
[12] Sze S. M. “Physics of semiconductor devices”, Murray Hill, 1982.
[13] Jain S. C., “Germanium-silicon strained layers and heterostructures”, Academic Press. Inc., 1994.
[14] Thompson M. J., Jason N. M., Nemanich R. J., and Tsai C. C., ”Silicide formation in Pd/a-Si:H Schottky barriers”, Appl. Phys. Lett., vol. 39, pp. 274, 1981.
[15] Hiranaka K., and Yamaguchi T.,“Effect of SixNy gate insulator on amorphous silicon thin-film transistors”, J. Appl. Phys. vol. 67, pp. 1088-1091, 1990.
[16] Kuiper A. E. T., Willwmsen M. F. C., and van Ijzendoorn L. “Hydrogen incorporation in silicon (oxy)nitride thin films”, Appl. Phys. Lett. vol. 53, pp. 2149, 1988.
[17] Chou J. S., Sah W. J., Lee S. C., Chang T. C., and Wang J. C., “Microcrystalline silicon deposited by grow discharge decomposition of heavily diluted silane”, Material Chemistry and Physical, vol. 32, pp. 273-279, 1992.
[18] Hsu K. C., Chang H., Hong C. S., and Hwang H. L., “The study on microstructure by NMR, FTIR, Raman, conductivity, and optical Bangap in hydrogenated amorphous silicon prepared by novel fabrication methods”, Mat. Res. Soc. Symp. Proc., vol. 258, pp. 69-74, 1992.
[19] Kanicki J., Hasan E., Kotecki D. F., Takamori T., and Griffith J. H., “Properties and application of undoped hydrogenated microcrystalline silicon thin films”, Mat. Res. Soc. Symp. Proc., vol. 149, pp. 173-179, 1989.
[20] Kobayashi I., Ogawa T., and Hotta S., “Plasma-enhanced chemical vapor deposition of silicon nitride”, Jpn. J. Appl. Phys., vol. 31, pp. 336-342, 1992.
[21] Fortunate G., Mariucci L., and Pecora A., “Study of the defects induced by low-energy (100eV) hydrogen-ion in amorphous silicon dioxide”, Appl. Phys. Lett. vol. 60(13), pp. 1564-1566, 1992.
[22] Wu. Y. L., and Hwo J. G., “Improved performance of n-MOSFET’s with Reoxidezed Nitrided Oxide (RNO) by using N2O as the reoxidizer”, Proc. of 1993 EDMS, pp.234-238.
[23] Xiao X., Sturm J. C., Parihar S. R., Lyon S. A., Meyerhofer D., and Palfrey S., “Silicide/Si1-xGex Schottky barrier long wavelength infrared detectors”, IEEE IEDM Tech. Digest, pp. 125-128, 1992.
[24] Thompson M. J., Johnson N. M., Nemanich R. J., and Tsai C. C., “Silicide formation in Pd/a-Si:H Schottky barriers”, Appl. Phys. Lett., vol. 39, pp. 274-276., 1981.
[25] Hattori R., Nakae A., and Shirafuji J., “An new type of tunnel-effect transistor employing internal field emission of Schottky barrier junction.”, Jpn. J. Appl. Phys. vol. 31, pp. 1467-1469, 1992.
[26] Saitoh W., Itoh A., Yamagami S., and Asada M., “Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor in silicon-on-insulator substrate and demonstration of sub-50-nm n-type device with device with metal gate”, Jpn. J. Appl. Phys., vol. 38, pp. 6226-6231, 1999.
[27] Hack M., Shur M. S., and Shaw J. G., “Physical model for amorphous-silicon thin-film transistor and their implementation in a circuit simulation program”, ISSS Trans. Electron. Device, vol. 36, No. 12, pp. 2753-2769, 1989.
[28] Sarcona G., Hatalis M. K., and Catalano A., “Amorphous silicon and silicon-germanium thin-film transistors formed by ion-implantation”, Mat. Res. Soc. Symp., vol. 297, pp. 907, 1993.
[29] Tanaka K., “Grow-discharge hydrogenated amorphous silicon”, chap. 3, KTK Scientific Publishers, 1989.