| 研究生: |
陳筠翰 Yun-Han Chen |
|---|---|
| 論文名稱: |
集水區險峻值與地文因子之統合探討 |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 土石流潛勢溪流 、陳有蘭溪流域 、蘭陽溪流域 、集水區險峻值(MR) 、形狀係數 |
| 外文關鍵詞: | Potential debris flow torrents, Chenyoulan River basin, Lanyang River basin, Melton Ratio, Form Factor |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之研究目的為藉由地理資訊系統(GIS)解析數值地形模型(DEM)之
資料,並萃取流域內之地貌參數計算各集水區內其溪流點的集水區險峻值
(Melton Ratio),並將各個集水區內其溪流點依據其 Melton Ratio 值的變化趨
勢進行六種分類。在本研究中則以南投的陳有蘭溪和宜蘭的蘭陽溪為主要研
究流域。其中依據 MR 值趨勢所進行的分類中,兩流域最多的分類皆為第三
類。除了 Melton Ratio 因子以外,本研究同時進行了各子集水區形狀係數的
計算以及比較,並以形狀係數和 Melton Ratio 趨勢分類和土砂災害種類、集
水面積進行比對。其中可以推得形狀係數越大,土砂災害以洪水、高含砂水
流較為常見;形狀係數越小,則以土石流較為常見。
The study mainly uses Geographic Information System (GIS) to analyze Digital
Elevation Model (DEM), and to extract the geomorphic parameters in different
mountainous watersheds in Taiwan. The Melton Ratio, representing the watershed
steepness, along the stream points in each catchment area was examined, and the
patterns are classified into six categories according to their spatial trends. The third
category, MR decaying downstream, is dominant among other categories in both
Chenyoulan River at Nantou county and Lanyang River at Yilan county. In
addition to the Melton Ratio, this study also explores the shape coefficients of each
sub-catchment area, and uses the shape coefficient and Melton Ratio trend to
distinguish the types of slopeland disasters. The larger the shape coefficient,
slopeland disasters are more prone to floods and debris floods. On the other hand,
the smaller the shape coefficient, the more common slopeland disasters are debris
flows or landslides.
1. 尹承遠、翁勳政、吳仁明、歐陽湘,“臺灣土石流之特性”,工程地質技
術應用研討會(V)論文集,P70-90,1993。
2. 王虹萍、周天穎,“結合層級分析法與模糊理論於土石流潛勢評估之研
究-以陳有蘭溪集水區爲例”,水保技術,5 卷 1 期,P13-22,2010。
3. 王家耀、崔鐵軍、苗國強,“數字高程模型及其數據結構”,海洋測繪”,
第 24 卷第 3 期,2004。
4. 吳仁明、趙家民,“苗栗火炎山崩塌地變遷對土石流發生之研究”,環
境與管理研究,第 9 卷第 1 期,P129-149,2008。
5. 李錫堤、費立沅,“蘭陽溪流域之山崩土石流潛在危害預測”,前瞻科
技與管理,1 卷 2 期,2011。
6. 沈哲緯、蕭震洋、羅文俊,“花蓮縣土石流潛勢溪流地文特性初探”,水
保技術,7 卷 2 期,P96-105,2012。
7. 阮香蘭、何智武、呂建華,“石門水庫集水區河川系統之研究”,中華水
土保持學報,23 卷 2 期,P13-28,1992。
8. 周憲德、曹鼎志、李璟芳,“土石流潛勢溪流之地文因子綜整判定”,水
土保持局期末報告書,2017。
9. 周憲德、曹鼎志、李璟芳,“土石流潛勢溪流之集水區地文參數判釋及
驗證-以蘭陽溪流域為例”,水土保持局期末報告書,2019。
10. 林昭遠、張力仁,“地文因子對土石流發生影響之研究-以陳有蘭溪為
例”,中華水土保持學報,31 卷 3 期,P227-237,2000。
11. 林美聆、陳彥澄,“應用光達地形資料於莫拉克災後陳有蘭溪流域崩塌
與土石流地質敏感地區判釋與分析”,航測及遙測學刊,第 18 卷第 2 期,
P129-144,2014。
12. 林政誼,“集水區險峻值於蘭陽溪土石流潛勢溪流之綜整判釋”,國立
中央大學,碩士論文,2019。
13. 陳榮河、江英政,“新中橫公路邊坡破壞之調查”,第二屆土石流研討
會論文集,P180-189,1999。
14. 張瑞津,“臺灣沖積扇之分布、型態及地形意義”,地質,17 卷 1-2 期,
P62-93,1997。
15. 黃棨霠,“坡地土砂災害之地貌因子綜合判釋”,國立中央大學,碩士
論文,2017。
16. 湯國安、劉學軍、閭國年,“數字高程模型極地學分析的原理與方法”,
北京-科學出版社,2005。
17. 湯國安,“中國數字高程模型與數字地形分析研究進展”,地理學報,
第 69 卷第 9 期,2014。
18. 楊明德、林基源、林蔚榮、黃凱翔、吳東諺,“莫拉克颱風於陳有蘭溪
流域之災害調查”,中華水土保持學報,40 卷 4 期,P345-358,2009。
19. Asfaw, D., Workineh, G., “Quantitative analysis of morphometry on Ribb
and Gumara watersheds: Implications for soil and water conservation”,
International Soil and Water Conservation Research Volume 7, Issue 2, pages
150-157, 2019.
20. Brenna, A., Surian, N., Ghinassi, M., Marchi, L., “Sediment–water flows in
mountain streams: Recognition and classification based on field evidence”,
Geomorphology Volume 371, 107413, 2020.
21. Cavalli, M., Crema, S., Trevisani, S., Marchi, L., “GIS tools for preliminary
debris-flow assessment at regional scale”, Journal of Mountain Science Volume
14, pages 2498-2510, 2017.
22. Chen, C.Y., Yu, F.C., “Morphometric analysis of debris flows and their
source areas using GIS”, Geomorphology Volume 129, Issues 3-4, 2011.
23. Chopra, R., Dhiman, R.D., Sharma, P., “Morphometric analysis of subwatersheds in Gurdaspur district, Punjab using remote sensing and GIS
techniques”, Journal of the Indian Society of Remote Sensing, Vol. 33, No. 4,
2005.
24. Horton, R.E., “Drainage-basin characteristics”, Transactions American
Geophysical Union Volume 13, Issue1, pages 350-361, 1932.
25. Ilinca, V., “Using morphometrics to distinguish between debris flow, debris
flood and flood (Southern Carpathians, Romania)”, CATENA Volume 197,
104982, 2021.
26. Khare, D., Mondal, A., Mishra, P.K., Kundu, S., Meena, P.K.,
“Morphometric analysis for prioritization using remote sensing and GIS
techniques in a hilly catchment in the state of Uttarakhand, India”, Indian Journal
of Science and Technology, Vol 7(10), 1650-1662, 2014.
27. Marchi, L., Fontana, G.D., “GIS morphometric indicators for the analysis
of sediment dynamics in mountain basins”, Environmental Geology Volume 48,
pages 218-228, 2005.
28. Montgomery, D.R., Dietrich, W.E., “Channel initiation and the problem of
landscape scale”. Science, 255, 826-830, 1992.
29. Thakkar, A.K., Dhiman, S.D., “Morphometric analysis and prioritization of
mini-watersheds in Mohr watershed, Gujarat using remote sensing and GIS
techniques”, Journal of the Indian Society of Remote Sensing Volume 35, pages
313-321, 2007.
30. Wilford, D.J., Sakals, M.E., Innes, J.L., Sidle R.C., Bergerud W.A.,
“Recognition of debris flow, debris flood and flood hazard through watershed
morphometrics”, Landslides 1, 61-66, 2004.
31. Welsh, A., Davies, T., “Identification of alluvial fans susceptible to
debris-flow hazards”, Landslides 8, 183-194, 2011.