跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹盛哲
Sheng-jue Tsao
論文名稱: 平屋頂建築物上方太陽能追蹤器的風力負載
Wind Loads of Solar Tracker on Flat Building Roof in Built-up Area
指導教授: 朱佳仁
Chia-ren Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 77
中文關鍵詞: 太陽能追蹤器平屋頂建築物風力負載風向角座向角壓力係數
外文關鍵詞: Solar tracker, Building roof, Wind load, Wind direction, Azimuth angle, Pressure coefficient
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用風洞實驗以及數值模式探討平頂建築物上太陽能追蹤器的風力負載。鑒於前人對於在屋頂上太陽能追蹤器的研究,本篇論文透過風洞模型實驗在不同的風向角、建築物與太陽能追蹤器之間的座向角、高度及傾斜角狀況下,量測太陽能板上下表面的風壓分佈以計算其所受風力與彎矩。


    This study used wind tunnel experiment and numerical simulation to investigate the aerodynamic loading on the solar tracker installed on flat building roofs. The surface pressures on the model tracker were measured under different wind directions, azimuth angles, inclined angles and pedestal height of the tracker.

    Abstract I Contents IV Notation V Figure captions VII Table captions X. Introduction 1 2. Experimental setup 6 2.1 Velocity measurement 8 2.2 Pressure measurement 8 3. Numerical model 10 4. Results and discussion 13 4.1 Velocity on the building roof 13 4.2 Pressure on the building surface 13 4.3 Pressure on the solar tracker 14 4.4 Effect of Adjacent Building 17 5. Conclusions 18 References 20 Figures 22 Tables 60

    Baki, V.V. G. S. Zivkovic, M. L. Pezo, 2011. Numerical simulation of the air flow around the arrays of solar collectors. Thermal Science Vol. 15, No. 2, pp. 457-465.
    Banks, D. 2013. The role of corner vortices in dictating wind loads on tilted flat solar panels mounted on large flat roofs. J. Wind Eng. Ind. Aerodyn. 123, 192-201.
    Bitsuamlak, G.T., Dagnew A.K., Erwin J.. Evaluation of wind loads on solar panel modules using CFD. International Symposium on Computational Wind Engineering 2010 23-27.
    Bo, G., Z. Li, Z. Wang, Y. Wang., 2012. Wind-induced dynamic response of heliostat. Renewable Energy 38;206-213.
    Chen, J. H., Bao, K., Zeng, L., Li, M.Y., 2012. A preliminary study of wind pressure on solar panel installed on gable roofs. J. Interior and Architectural Design 13, 13-20. (in Chinese)
    Chen, J. H. and Chou, J.-C. 2014. Wind loads on the flat-roof mounted solar panel. International Wind Engineering Symposium 2014, Taipei, Taiwan.
    Chu, C.R., Chiang, P.H., 2014. Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 124, 82-89. doi.org/10.1016/j.jweia.2013.11.001.
    Chu, C.R., Chang, C.Y., Huang, C.J., Wu, T.R., Wang, C.Y., Liu, M.Y., 2013. Windbreak protection for road vehicles against crosswind. J. Wind Eng. Ind. Aerodyn. 116, 61-69. doi:10.1016/j.jweia.2013.02.001.
    Chung, K., Chang, K., Liu, Y., 2008. Reduction of wind uplift of a solar collector model. J. Wind Eng. Ind. Aerodyn. 96 (8-9), 1294–1306.
    Cosoiu, C.I, Damian, A. Damian, R.M., Degeratu, M., 2008. Numerical and experimental investigation of wind induced pressures on a photovoltaic solar panel. Energy, Environment, Ecosystems and Sustainable Development June 11-13.
    Shademan, M., Hangan, H. 2009. Wind loading on solar panels at different inclination angles. 11th American Conference on Wind Engineering. San Juan, Puerto Rico, June 22-26, 2009.
    Meroney, R.N., Neff, D.E., 2010. Wind effects on roof-mounted solar photovoltaic arrays: CFD and wind-tunnel evaluation. The Fifth International Symposium on Computational Wind Engineering, Chapel Hill, North Carolina, USA, May 23-27.
    Kawai, H., Okuda, Y., Ohashi, M., 2012. Structure of conical vortex on and behind a cube in smooth and turbulent flows. The 7th International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China.
    Kono, T., Kogaki, T. 2012. Numerical investigation of the wind conditions over a rectangular prism-shaped building for mounting small wind turbines. Wind Engineering 36(2), 111-122.
    Kopp, G.A., Farquhar, S. Morrison, M.J., 2012. Aerodynamic mechanisms for wind loads on tilted, roof-mounted, solar arrays. J. Wind Eng. Ind. Aerodyn. 111, 40-52.
    Kopp, G.A., Banks, D.B., 2013. Use of the wind tunnel test method for obtaining design wind loads on roof-mounted solar arrays. J. Structural Eng., ASCE. 139 (2), 284-287.
    Lee, B. E., R. A. Evans, 1984. The measurement of wind flow patterns over building roofs, Building and Environment Vol. 19, No. 4; 235-241.
    Pfahl, A., Uhlemann, H., 2011. Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 99 (9), 964-968.
    Pfahl, A., Buseimeier, M., Zaschke M. 2011. Wind loads on heliostats and photovoltaic trackers at various aspect ratio. Solar Energy. 85 (9), 2185-2201.
    Radu, A., Axinte, E., Theohari, C., 1986. Steady wind pressures on solar collectors on flat-roofed buildings. J. Wind Eng. Ind. Aerodyn. 23, 249-258.
    Radu, A., Axinte, E., 1989. Wind forces on structures supporting solar collectors. J. Wind Eng. Ind. Aerodyn. 32, 93-100.
    Scaletchi, I., I. Visa, R. Velicu, 2010. Modeling wind action on solar tracking PV platforms. Bulletin of the Transilvania University of Braşov Vol. 3 (52).
    Shademan, M., Hangan, H., 2009. Wind loading on solar panels at different inclination angles. 11th American Conference on Wind Engineering. June 22-26.
    Stathopoulos, T., Zisis I., Xypnitou E., 2014. Local and overall wind pressure and force coefficients for solar panels. J. Wind Eng. Ind. Aerodyn. 125, 195–206.
    Suaris, W., Irwin P., 2010. Effect of roof-edge parapets on mitigating extreme roof suctions. J. Wind Eng. Ind. Aerodyn. 98, 483-491.

    QR CODE
    :::