| 研究生: |
錢德豪 De-Haw Chien |
|---|---|
| 論文名稱: |
平面光波導中之折射式元件與系統 Refractive elements and systems on planar waveguide |
| 指導教授: |
張正陽
Jeng-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學研究所碩士在職專班 Executive Master of Optics and Photonics |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 固態浸沒式透鏡 、平面光波導 、折射式元件 |
| 外文關鍵詞: | ROEs, waveguide, SIL |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
本文為積體光學的應用之一,運用半導體製程技術,在以矽為基板,SiO2/Glass/Air為平面光波導 (Planar Waveguide) 的結構中,架設以折射式光學元件 (Refractive Optical Elements,ROEs) 為主的系統。
製程時我們先在矽基板上成長一層2μm厚的氧化矽作為緩衝層(Buffer Layer),再以1μm厚、高折射率 (n=2) 、高透光率的氮化矽作為系統元件之材料,最後再鋪上一層與元件相同厚度的玻璃材料,折射率為1.53,以SiO2/Glass/Air構成我們的平面波導結構。量測時,我們以He-Ne雷射 (λ=632nm) 透過單模光纖直接耦合入2mm寬的平面波導 (Planar Waveguide) 中的光學系統,由固態浸沒式系統 (Solid Immersion Lens,SIL) 得到小於 0.7μm的聚焦點;且由分光鏡 (Beam Splitter) 的作用,得到清晰的分光效果。
透過本文階段性的成果,我們證明折射式光學元件在平面波導中,是可行的。將來若以平面波導為光學平台、運用半導體製程技術製作,並結合折射式與繞射式光學元件組成系統,則大量快速製造高品質,多功能且輕、薄、短小的光學系統,將指日可待。
參考文獻
[1] Shogo Ura, Toshiaki Suhara, Hiroshi Nishihara, ‘An Integrated-Optic Disk Pickup Device’, Journal of Lightwave Technology, vol. LT-4, No. 7, July 1986.
[2] Kenny H. Chiang, Christopher J. Summers, Richard P. Kenan, ‘Direct measurement of the effective refractive indices of GaAs/AlGaAs slab waveguide: a new technique’, Applied Optics, Vol.30 No.18, 20 June 1991.
[3] C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Oriowsky, and L. E. Katz, ‘Law loss Si3N4-SiO2 optical waveguide on Si’, Applied Optics, Vol. 26, No.13, 1 July 1987.
[4] Tim Rausch, James A. Bain, Daniel D. Stancil, Tuviah E. Schlesinger, ‘Near Field Hybrid Recording with a Mode Index Waveguide Lens’, proceedings of SPIE, Vol.4090 (2000).
[5] Jaisoon Kim and Tom.D.Milster, ‘Design aspects of Waveguide Hybride Advance Mems (WHAM)’, Optical Data Storage Topical 2001.Santa Fe, New Mexico. Apirl 2001.
[6] Amnon Yariv and Pochi Yeh, ‘Optical Wave in Crystals’, Mei Ya Publications, INC.,Taipei, Taiwan.
[7] D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, and K. E. Goodson, ‘Near-field infrared imaging a microfabricated solid immersion lens’, 2 October 2000,Vol.77 No.14, Applied Physics Letter.
[8] 李金萍, ‘極化繞射光學元件在高密度光學讀取頭上之應用研究’, 中華民國八十九年七月,國立中央大學光電科學研究所碩士論文。
[9] B. D. Terris, H. J. Mamin, and D. Rugar, ‘Near-field optical data storage’, 8 January 1996, Vol.68 No.2, Applied Physics Letter.
[10] Qiang Wu, G. D. Feke, and Robert D. Grober, ‘Realization of numberical aperture 2.0 using a gallium phosphide solid immersion lens’, 27 December 1999, Vol 75 No.26, Applied Physics Letter.
[11] Grant R.Fowles, ‘Introduction to Modern Optics’, second edition.
[12] S. M. Mansfield and G. S. Kino, ‘Solid immersion microscope’, Appl. Phys. Lett. 57, 2615 (1990).
[13] S. M. Mansfield , W. R. Studenmund, G. S. Kino, and K. Osato, ‘High-numerical-aperture lens system for optical storage’, Optics Lett, 18, 305, 1993.
[14] L. P. Ghislain and V. B. Elings, ‘Near-field photolithography with a solid immersion lens,’ Appl. Phys. Lett. Vol 74, No 4, 25 January 1999.
[15] Marc Madou, ‘Fundamentals of MICROFABRICATION’, CRC Press.
[16] S.Valette, A. Morque and P. Mottier, ‘High Performance Integrated Fresnel Lens on Oxidised Silicon Substrate’, Electronics Letters, Vol 18, No.1, 7 January, 1982.
[17] Gerd Ulber, ‘An integrated optics sensor on silicon for the measurement of displacement, force and refractive index’, SPIE Vol.1506 Micro-Optics Ⅱ (1991).