| 研究生: |
林世彬 Shin-pin Lin |
|---|---|
| 論文名稱: |
DNA在微通道的熱泳行為 Thermophoresis of DNA in micro-channel |
| 指導教授: |
陳志強
Chan-chi Keung 黎璧賢 Pik-yin Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 熱泳 、核糖核酸 |
| 外文關鍵詞: | Thermophoresis, Soret coefficient, DNA |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究400bp DNA, 48kbp λ-DNA 和166kbp T4 DNA在微通道中的熱泳運動。我們使用近紅外線雷射當作在微通道產生溫度梯度的加熱源。利用YoYoY-1螢光染劑和DNA結合後會產生1000倍強度的螢光特性,以螢光強度變化代替DNA的濃度變化並記錄下其在不同時間的影像。實驗後由所記錄的DNA影像進而分析出其量變曲線。最後再由量變曲線隨時間的變化以數值分析的方法量測得擴散常數和ST*。我們定義ST*=ΔT0ST。ΔT0是加熱點在加熱後和微通道兩端的溫度差。ST是Soret係數,定義為熱擴散系數與擴散系數之比。
這篇論文的目標旨在研究不同管徑的毛細玻璃管、不同長度的DNA、不同強度的加熱源、不同濃度的奈米等級的金粒子和不同濃度的亞精胺對DNA在熱泳實驗中的影響。我們在實驗中發現a)擴散常數和ST*的大小會和毛細玻璃管管徑和DNA回轉半徑的比例有關。b)當毛細玻璃管管徑比DNA回轉半徑大時,加熱源的強度並不會影響擴散常數和ST的大小。c)亞精胺會增加DNA的擴散常數但ST的大小卻會因為亞精胺的增加而減少。d) 奈米等級的金粒子會增加DNA的擴散常數但是對於ST似乎並無影響。
The motion of DNA in micro-channels due to thermophoresis is studied. 48kbp λ-DNA, 166kbp T4-DNA and 400bp DNA are used. They are tagged by fluorescent YoYo-1 molecules and placed in a micro-sized channel. An infrared laser is used to heat up the system forming a temperature gradient inside the channels. The DNA concentration gradient is then measured by recording the fluorescence intensity profiles of the YoYo-1. The measured DNA concentration profiles are found to be in good agreement with our numerical model fitting in which diffusion and thermophoretic fluxes are considered. Both the apparent Soret coefficient (ST*) and diffusion constant of DNA can be obtained from these numerical model fittings. We define the ST*=ΔT0ST.ΔT0 is the temperature rise of the heating spot. ST is Soret coefficient defined as ST=DT/D when DT is the thermal diffusion coefficient and D is the usual self-diffusion constant.
The purpose of this thesis is to study the effects of different capillary tube diameters, lengths of DNA, heating powers, concentration of nano-gold and concentration of spermidine on the properties of DNA thermophoresis. We find that a) diffusion constant and apparent Soret coefficient depend on the ratio of diameter of capillary tube to radius of gyration of DNA b) diffusion constant and Soret coefficient are independent of heating powers when diameter of capillary tube is bigger than radius of gyration of DNA. c) Spermidine will increase the diffusion constant of the DNA and decrease Soret coefficient with the increase of the concentration of spermidine d) Nano-gold will increase the diffusion constant of the DNA but have little effect on the apparent Soret coefficient with the increase of the concentration of nano-gold.
1. C. Ludwig, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 20, 539 (1856).
2. C. Soret, Arch. Sci. Phys. Nat. Genµeve 3, 48 (1879).
3. J.C. Maxwell, J.C. Collected Papers II, 681-712 (1879) (Cambridge University Press, 1890).
4. P.S. Epstein, Z. Phys. 54, 537 (1929).
5. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynam-ics (North-Holland, Amsterdam 1969).
6. Giglio M, Vendramini A, Soret-Type Motion of Macromolecules in Solution Phys. Rev. Lett., 1977. 38: p. 26 - 30
7. Iacopini S, Piazza P, Thermophoresis in protein solutions. Europhys. Lett., 2003. 63: p. 247-253.
8. Piazza R, Guarino A, Soret Effect in Interacting Micellar Solutions. Phys. Rev. Lett., 2002. 88.
9. Berend Jan, Gans de, Kita R, Müller B, Negative thermodiffusion of polymers and colloids in solvent mixtures. The Journal of Chemical Physics 2003. 118: p. 8073-8081
10. Rauch J, Köhler W, Diffusion and Thermal Diffusion of Semidilute to Concentrated Solutions of Polystyrene in Toluene in the Vicinity of the Glass Transition. Phys. Rev. Lett., 2002. 88: p. 185901[4 pages].
11. Wiegand S, Köhler W, Thermal Nonequilibrium Phenomena in Fluid Mixtures (Springer, Berlin,). 2002. p. 189.
12. Putnam, S.A. and D.G. Cahill, Transport of nanoscale latex spheres in a temperature gradient. Langmuir, 2005. 21(12): p. 5317-23.
13. Rusconi, R., L. Isa, and R. Piazza, Thermal-lensing measurement of particle thermophoresis in aqueous dispersions. Journal of the Optical Society of America B-Optical Physics, 2004. 21(3): p. 605-616.
14. Braun, D. and A. Libchaber, Trapping of DNA by thermophoretic depletion and convection. Phys Rev Lett, 2002. 89(18): p. 188103.
15. Braun, D. and A. Libchaber, Thermal force approach to molecular evolution. Physical Biology, 2004. 1(1-2): p. P1-P8.
16. Braun, D., N.L. Goddard, and A. Libchaber, Exponential DNA replication by laminar convection. Physical Review Letters, 2003. 91(15): p. -.
17. Duhr, S. and D. Braun, Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Physical Review Letters, 2006. 97(3): p. -.
18. Duhr, S., S. Arduini, and D. Braun, Thermophoresis of DNA determined by microfluidic fluorescence. European Physical Journal E, 2004. 15(3): p. 277-286.
19. Duhr, S. and D. Braun, Why molecules move along a temperature gradient. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(52): p. 19678-19682.
20. Duhr, S. and D. Braun, Thermophoretic depletion follows Boltzmann distribution. Physical Review Letters, 2006. 96(16): p. -.
21-1. Chien, F. T.Lin, S. G.Lai, P. Y.Chan, C. K, Observation of two forms of conformations in the reentrant condensation of DNA. Physical Review E, 2007,75(4):p1922
21. Debuschewitz, C. and W. Kohler, Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures. Physical Review Letters, 2001. 8705(5): p. -.
22. Piazza, R. and A. Guarino, Soret effect in interacting micellar solutions. Physical Review Letters, 2002. 88(20): p. -.
23. Iacopini, S. and R. Piazza, Thermophoresis in protein solutions. Europhysics Letters, 2003. 63(2): p. 247-253.
24. TERAOKA, I., POLYMER SOLUTIONS A Introduction to Physical Properties.
25. http://seqcore.brcf.med.umich.edu/doc/educ/dnapr/pg1.html.
26. http://en.wikipedia.org/wiki/DNA.
27. Pluen, A., et al., Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophysical Journal, 1999. 77(1): p. 542-552.
28. Haidacher, D., A. Vailaya, and C. Horvath, Temperature effects in hydrophobic interaction chromatography. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(6): p. 2290-2295.
29. Mancera, R.L., et al., Thermodynamics of the hydration of non-polar substances. Biophysical Chemistry, 1998. 70(1): p. 57-63.
30. Rye, H.S., et al., Stable fluorescent complexes of double-stranded DNA
with bis-intercalating asymmetric cyanine dyes: properties and
applications. Nucleic Acids Res, 1992. 20(11): p. 2803-12.
31. Gurrieri, S., et al., Direct visualization of individual DNA molecules by fluorescence microscopy: characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO. Anal Biochem, 1997. 249(1): p. 44-53.
32. Akerman, B. and E. Tuite, Single- and double-strand photocleavage of DNA by YO, YOYO and TOTO. Nucleic Acids Res, 1996. 24(6): p. 1080-90.
33 http://probes.invitrogen.com/servlets/spectra?fileid=3601dna.
34.http://www.chroma.com/index.php?option=com_products&Itemid=53&task=details&productType=set&id=30.
35. Oana, H., et al., On-site manipulation of single whole-genome DNA molecules using optical tweezers. Applied Physics Letters, 2004. 85(21): p. 5090-5092.
36. Bennink, M.L., et al., Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. Cytometry, 1999. 36(3): p. 200-8.
37. Peterman, E.J., F. Gittes, and C.F. Schmidt, Laser-induced heating in optical traps. Biophys J, 2003. 84(2 Pt 1): p. 1308-16.
38 Robertson et.al.,Diffusion of isolated DNA molecules: Dependence on length and topology, PNAS 103,7310 (2006).
39 T. N. Khazanovich, J. Polym. Sci., Part C: Polym. Symp. 16, 2463(1978)
40 G.H. Thompson, M.N. Myers and J.C. Giddings, Observation of a field-flow fractionation effect with polystyrene samples. Sep. Sci. 2 (1967), pp. 797–800.
41 G.H. Thompson, M.N. Myers and J.C. Giddings, Thermal field-flow fractionation and polystyrene samples. Anal. Chem. 41 (1969), pp. 1219–1222.