| 研究生: |
李旺儒 Wang-Ru Lee |
|---|---|
| 論文名稱: |
比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究 Influence of geological factors on the kinematics of the neighboring Jiufengershan and Hungtsaiping landslides trigged by Chi-Chi earthquake |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 速度相關摩擦率 、集集地震 、累積位移分析法 、邊坡穩定 、地震測站異象性 、紅菜坪地滑 、九份二山地滑 |
| 外文關鍵詞: | Slope Stability, Jiufengershan landslide, Hungtsaiping landslide, Anistropic strong-motion, Chi-Chi earthquake, Velocity-dependent friction law, Newmark method |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1999年9月21日集集大地震重創台灣,除造成草嶺與九份二山兩處大山崩外,同時也使中部山區發生數千處大小不一的山崩。李錦發等人以數值航測技術進行山崩立體判釋,圈繪紅菜坪地滑分佈位置及影響範圍,根據其圈繪結果,紅菜坪地滑地之滑動面積廣達100多公頃,此與滑動面積亦超過100公頃之九份二山只相距約2公里。然而,根據區域地質圖以及地形圖,得知九份二山與紅菜坪現地地質、地形條件類似,受集集地震之影響也相似,但紅菜坪之滑動相對於九份二山山崩卻較緩慢,造成兩大型山崩之運動特性差一之原因值得深入探究。本研究根據現地調查確認紅菜坪地滑之滑動區域面積約88.6公頃,滑動材料則為厚層崩積層,根據滑動體地表位移方向及地形特徵,研究將紅菜坪滑動塊體分為三塊(滑動塊體A、滑動塊體B、滑動塊體C),其中滑動塊體A主要為崩積層沿頁岩層面滑動。其次蒐集中央氣象局於紅菜坪地滑地以及九份二山地滑地附近之強震資料(12地震測站),除分析強震資料之方向性外,並利用累積位移分析法計算強震引致邊坡位移之方向性。結果發現水平加速度、艾氏震度以及邊坡永久位移之最大值幾乎分佈於E ~W及WNW ~ ESE等方向。本研究定量計算集集地震對紅菜坪地滑地及九份二山地滑地運動特性之影響,逆分析結果顯示,九份二山之破壞摩擦角比紅菜坪大2.6°,根據引入速度相關摩擦率累積位移量計算結果,得知九份二山之地質材料對於滑動速度之影響比對紅菜坪影響敏感,由此可知,此二大型滑動之運動特性與震波方向、坡向、地質材料以及構造特性皆有相當大的關係。
The Chi-Chi Earthquake (Mw=7.6) of September 21, 1999 triggered many landslides in central Taiwan. Two of these landslides, Hungtsaiping and Jiufengershan were gigantic landslides. The distance between these two landslides is 2km. The kinematic of these two landslides is significant different. Jiufengershan landslide was a catastrophic rockslide-avalanche and the Hungtsaiping landslide was relatively slow-moving. This research explores the geological factors accounts for the differences. Factors such as the characteristics of strong-motion, geology and geomorphology were considered in the study. Based on the site investigation, the mechanism of Hungtsaiping landslide is studied. The sliding area is 88.6ha. Three slid masses(slid mass A, slid mass B, slid mass C) are identified. Thick colluvium sliding along bedding plane of shale are also identified.
An analysis of 12 strong-motion records collected in the concern area showed that the distribution of horizontal pseudostatic coefficients and earthquake energy ratio were anisotropic. The principal direction of strong-motion is mostly in the E/W~ESE/WNW trending. The maximum permanent displacements computed using the strong-motion records and a modified sliding-block method were also direction-dependent and oriented in the trend of E/W~ESE/WNW. This direction is perpendicular to the trend of the main geological structures of the studied area.
The back calculated friction angle that corresponds to a critical land mass displacement for the Jiufengershan landslide is about 2.6º larger than that of Hungtsaiping landslide. The material on the sliding surface in Jiufengershan should be more velocity-dependent than that of the Hungtsaiping landslide according to the back calculations. The difference of the friction angles of the sliding surface of two study landslides. The difference of the friction angles of the sliding surface of two study landslides is oriented from the different slid materials. The importance of direction-dependent strong-motion, slope aspect, and mechanical properties of sliding surface on the kinematics of two nearby deep-seated landslides is demonstrated.
Andrews, D. J., 1976.Rupture velocity of plane strain shear crack, J. Geophys.Res., V.81, pp.5679~5687.
Arias, A., 1970. A measure of earthquake intensity. In: Hansen, R.J. (Ed.), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge, MA, pp.438–483.
Beeler,N.M., Tullis,T.E., Weeks,J.D., 1994., The roles of time and displacement in the evolution effect in rock friction, Geophys. Res. Lett., 21:1987-1990.
Blanpied, M. L., Lockner, D. A. & Byerlee, J. D., 1991. Fault stability inferred from granite sliding experiments at hydrothermal conditions” Geophys. Res. Lett.Vol. 18, pp.609~612.
Byerlee, J. and Summers, R. 1976. Technical Note: A Note on the Effect of Fault Gouge Thickness on Fault Stability,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. , Vol. 13, pp. 35-36.
Cavers, D.S., 1981. Simple methods to analyze buckling of rock slopes. Rock Mechanics 14, 87– 104.
Chang, K.J., Taboada, A., Chan, Y.C., 2005a. Geological and morphological study of the Jiufengershan landslide triggered by the Chi-chi Taiwan earthquake. Geomorphology, 71:293-309.
Chang, K.J., Taboada, A., Lin, M.L., Chen, R.F., 2005b. Analysis of landsliding by earthquake shaking using a block-on-slope thermo-mechanical model: Example of Jiufengershan landslide, central Taiwan. Eng. Geol., 80:151-163.
Chen, W. F., and Liu, X. L., 1990. Limit analysis in soil mechanics. Developments in Geotechnical Engineering. pp. 405-436. Amsterdam: Elsevier.
Chi, W. R., 1979. Calcareaous nannoplankton biostratigraphy of the Nantou area, central Taiwan. Petrol. Geol. Taiwan, No16, 131-165.
Chiu, H. T., 1975. Miocene stratigraphy anfits relation to the Paleogene rocks in west-central Taiwan. Petrol. Geol. Taiwan, No12, 51-80.
Crawford, A. M., Curran, J. H., 1981. The influence of shear velocity on the frictional resistance of rock discontinuities. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 18:505-515.
Dieterich, J., 1979. Modelling of rock friction: 1.Experimental results and constitutive equations. J. Geophys. Res., 84:2161-2168.
Gu, J. C., 1985. Frictional resistance to accelerating slip, PAGEOPH, Vol. 122,pp.662~679.
Havenith, H. B., Jongmans, D., Abdrakhmatov, K., Trefois, P., Delvaux, D., Torgoev, I. A., 2000. Geophysical investigations of seismically induced surface effects: case study of a landslide in the Suusamyr valley, Kyrgyzstan. Surveys in Geophysics 21, 349-369.
Helmstetter, A., Sornette,D., Grasso,J.R., Andersen,J.V., Gluzman,S., Pisarenko, V., 2004. Slider block friction model for landslides: Application of Vaiont and La Clapiere landslides. J. Geophys. Res., 109, B02409, doi:10.1029/2002JB002160.
Huang, C. Y., 1986. Oligocene and Miocene stratigraphy of the Kouhsing area, central Taiwan. Petrol. Geol. Taiwan, No24, 281-318.
Huang, C.C., Lee, Y.H., Liu, H.P., Keefer, D.K., Jibson, R., 2001. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi Taiwan earthquake. Bull. Seism. Soc. Am., 91:953–958.
Huang, C.S., Chen, M.M., Hsu, M.I., 2002. A preliminary report on the Chiufenershan landslide triggered by the 921 Chichi earthquake in Nantou, central Taiwan. TAO, 13: 387-395.
Jibson, R. W., 1985. Landslides caused by the 1811-12New Madrid earthquakes [Ph.D. dissert.]: Stanford. California, Stanford University, 232p.
Jibson, R.W., Keefer, D.K., 1993. Analysis of the seismic origin of landslides examples from the New Madrid seismic zone. Geol. Soc. Amer. Bull., 105:521-536.
Keefer DK., 1984. Landslides caused by earthquakes. Bulletin of the Geological Society of America, 95:406–421.
Keefer, D. K., and Wilson, R. C., 1989. Predicting earthquake-induced landslides with emphasis on arid and semi-arid environments, in Sadler, P. M., and Morton, DD. M., eds., Landslides in a semi-arid environment: Riverside. California, Inland Geological Society, v.2 p118-149.
Lee, C. T., Cheng, C. T., Liao, C. W., Tsai, Y. B., 2001. Site classifications of Taiwan free-field strong-motion stations. Bull. Seism. Soc. Am., 91:1283-1297.
Lee, J.F., Wei, C.Y., Huang, C.C, 2004. The study of Hungtsaiping landslide using digital photogrametric technique. Proceeding of International Symposium on Landslide and Debris Flow Hazard Assessment, 2004 Oct 7th~8th, Taiwan, pp.5-1-5-9.
Ling, H. I., Mohr Y. & Rawabata T., 1999. Seismic analysis of sliding wedge: extended Francais-Culmann’s analysis, Soil Dynamics and EarthquakeEngineering, v.18 p.387-3930
Marone, C. 1998. Laboratory-Derived Friction Laws and Their Application to Seismic Faulting, Annu. Rev. Earth Planet. Sci., Vol.26, pp. 643-696.
Newmark, N.M., 1965. Effects of earthquakes on dams and embankments. Geotechnique, 15:139-159.
Rodrı´guez, C. E., Bommer, J. J., Chandler, R. J., 1999 Earthquake-induced landslides: 1980–1997. Soil Dynamics and Earthquake Engineering 18, 325–346
Romeo, R., 2000. Seismically induced landslide displacements: a predictive model, Engineering Geology, Vol. 58, p. 337-351.
Rowland, S. M. and Duebendorfer, E. M. 1994. Structural analysis and synthesis a laboratory course in structural geology. pp. 107-117. Boston Blackwell Scientific.
Ruina, A. L., 1983. Slip instability and state variable friction laws. J. Geophys. Res., 88:10359-10370.
Scholz, C. H., 1998. Earthquakes and friction laws. Nature, 391:37-42.
Seed, H.B., 1967. Slope stability during earthquakes. ASCE J. Soil Mech. Found. Div. SM4, 299– 323.
Shin, T.C., 2002. Some seismological aspects of the 1999 Chi-Chi earthquake in Taiwan. TAO, 11:555-566.
Shou, K.J., Wang, C.F., 2003. Analysis of the Chiufengershan landslide triggered by the 1999 Chi-chi earthquake in Taiwan. Eng. Geol., 68:237-250.
Stesky, R. M., 1978. Mechanisms of high-temperature fractional sliding in Westerly granite, Can. J. Earth Sci., Vol. 15,pp. 361~375.
Wang, W.N., Chigira, M., Furuya, T., 2003. Geological and geomorphological precursors of the Chiu-feng-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan. Eng. Geol., 69:1-13.
Wen, K. L., Peng, H. Y., Tsai, Y. B.,Chen, K. C. 2001. Why 1 g was recorded at TCU129 site during the 1999 Chi-Chi, Taiwan earthquake? Bull. Seis. Soc. Am., 91, 5, 1255-1266.
Wieczorek, G.F., Wilson, R.C., Harp, E.L., 1985. Map showing slope stability during earthquakes in San Mateo County, California. Miscellaneous Investigation Maps I-1257-E, U.S.G.S., 1985.
Wilson, R. C., and Keefer, D. K., 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America, vol. 73, no. 3, pp. 863-877.
Wilson, R.C., Keefer, D.K., 1985. Predicting areal limits of earthquake-induced landsliding. In: Ziony, J.I. (Ed.), Evaluating Earthquake Hazards in the Los Angeles Region An Earth-science Perspective. US Geol. Surv. Prof. Paper 1360, 316–345.
中國石油公司,1982。十萬分之一地質圖,台中圖幅,No.4。台灣油礦探勘處印行。
王士榮,2002。以位移法分析自然邊坡在地震力作用下的平面式破壞,國立成功大學資源工程研究所碩士論文。
行政院國家科學委員會,2005。九二一集集大地震,台北。
何春蓀,1955。南投集集大山煤田地質地形圖及構造剖面圖,經濟部中央地質調查所。
李正楠,2001。草嶺崩坍地受震行為初探,國立臺灣大學土木工程學研究所碩士論文
李錦發、魏正岳、林明旻與黃健政,2004。數值航測應用於山崩調查 - 以紅菜坪地滑為例,經濟部地質調查所。
柯虹如,2006。紅菜坪崩積層特性與地滑行為初探,國立台灣大學土木工程研究所碩士論文,台北。
高櫸樹,2001。黏土質斷層泥摩擦律特性初探,國立台灣大學土木工程研究所碩士論文,台北。
國家地震工程研究中心,1999。九二一集集大地震全面勘災精簡報告,台北。
彭文飛,2001。以位移法分析自然邊坡在地震時之破壞行為的初步探討,國立成功大學資源工程研究所碩士論文。
黃鑑水、謝凱旋、陳勉銘,2000。五萬分之一埔里圖幅暨說明書,經濟部中央地質調查所,共75頁。
溫郁菁,2003。以位移法分析自然邊坡在地震力作用下的曲面形破壞,國立成功大學資源工程研究所碩士論文。
經濟部中央地質調查所,1999。九二一地震地質調查報告,台北。
經濟部中央地質調查所,2005。紅菜坪地滑監測系統建立與變形機制研究(1/2) ,台北。
廖軒吾,2000。集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文。
羅偉、吳樂群、陳華玟,1999。五萬分之國姓圖幅暨說明書,經濟部中央地質調查所出版。