跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖康廩
Kang-Ling Liau
論文名稱: 對位與間位二苯乙烯胺衍生物的光誘導分子內電荷轉移行為之研究
Photoinduced Intramolecular Charge Transfer Behavior of meta and para- Aminostilbene Derivatives
指導教授: 楊吉水
Jye-Shane Yang
侯敦仁
Duen-Ren Hou
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 96
語文別: 中文
論文頁數: 332
中文關鍵詞: 光化學螢光共軛分子內電荷轉移異構化作用異構物扭轉分子內電荷轉移反式二苯乙烯胺基取代基激發態
外文關鍵詞: isomers, twisted intramolecular charge transfer, isomerization, conjugation, photochemistry, ICT, amino group, intramolecular charge transfer, TICT, fluorescence, trans-stilbene, excited state, substituent
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   含有強的電子予體(D)與受體(A)的共軛系統,其激發態都具有光誘導之分子內電荷轉移(ICT)行為存在,此ICT態的構形常被探討。在非極性溶劑中的ICT態,通常因電子未定域化效應而形成平面ICT(PICT)結構;可是在極性溶劑中,有些D-A系列的化合物,則是會扭轉連結D與A的單鍵,形成電荷分離的扭轉ICT(TICT)態。
      本論文的研究對象為反式二苯乙烯胺的衍生物,研究方法係運用「胺基共軛效應」—在激發態時,N-苯基取代的反式-4-二苯乙烯胺之螢光強弱,對分子構形的平面性相當敏感。就系列化合物p1R而言,我們發現它們的ICT結構與取代基間具有關鍵性的影響—當R為甲氧基、甲氧甲酯基與氰基時,在氰甲烷中會產生TICT行為,雖然扭轉的C—N單鍵不盡相同,但其共同的現象就是有Φf + 2Φtc << 1的行為。
      我們也研究反式-3-二苯乙烯胺的系列化合物m1R(p1R的間位異構物)的相關行為。結果發現1CN與1Me的對位和間位異構物的TICT形成過程都屬於放熱反應,但它們形成TICT態的傾向並不相同,顯示PICT至TICT態的能量障礙扮演重要角色。我們首先提出新的觀點:「熱力學上允許的TICT態不一定會生成,因為其反應動力學可能是不利生成的。」
      除了p1R和m1R外,兩個胺基取代的二苯乙烯衍生物,如3DDS等的ICT行為,也在本論文中有所討論。


    Photoinduced intramolecular charge transfer (ICT) often dictates the excited-state behavior of strong electron donor (D)-acceptor (A) substituted conjugated systems. One important issue associated with ICT is the D-A conformation. In nonpolar solvents, it is conceivable that the ICT state is dominated by D-A mesomeric interactions and thus favors a planar geometry (PICT). However, in polar solvents, some D-A systems undergo torsional motion about the D-A bond and lead to a charge-separated twisted ICT (TICT) state.
    In this thesis, we have studied the ICT states of a series of trans-aminostilbenes on the basis of the “amino conjugation effect”, where the fluorescence intensity of N-phenyl substituted trans-4-aminostilbenes is sensitive to the planarity of molecules in the excited state. For the compound series p1R, we found that the ICT structure of p1R depends on the substituent in the N-phenyl group. When the R group is a methoxy, methoxycarbonyl, or cyano group, the TICT state could be formed in acetonitrile. Although the position for C-N bond twisting is not necessarily the same for all the TICT-forming species, the phenomenon of Φf + 2Φtc << 1 is one thing in common.
    We have also designed a series of trans-3-N-arylaminostilbenes, m1R, the meta isomers of p1R. The results show that the meta and para isomers of 1CN and 1Me have different propensity of TICT formation. Although the TICT forming processes are all exothermic, the absence of TICT formation indicates that the energy barrier from PICT state to TICT state plays an important role. We have shown that a “thermodynamically allowed TICT formation is insufficient to argue for its formation, because it could be kinetically inhibited.”
    Besides p1R and m1R, the ICT behavior of other related diamino stilbenes such as 3DDS were also discussed in this thesis.

    中文摘要 ................................................ i 英文摘要 .............................................. iii 誌謝 .................................................... v 目錄 .................................................. vii 圖目錄 ............................................... xiii 表目錄 ................................................ xxi 附圖(表)目錄 ...................................... xxvii 第一章 前言 ............................................. 1 1-1 光化學與二苯乙烯的光化學 ............................ 1 1-1-1 光化學 .......................................... 1 1-1-2 分子光化學 ...................................... 2 1-1-3 螢光放射機制、量子產率與躍遷類型 ................ 6 1-1-4 光學異構化作用 .................................. 8 1-1-5 二苯乙烯的光化學行為 ............................ 9 1-1-6 取代基對反式二苯乙烯光化學行為之影響 ........... 14 1-1-7 反式-4-二苯乙烯胺的光化學行為 .................. 16 1-2 對位與間位取代基效應的相關文獻 ..................... 16 1-2-1 苯環對位與間位取代的螢光行為之比較 ............. 16 1-2-2 「對位共軛」與「間位共軛」對材料性質的影響 ..... 21 1-2-3 「對位胺基」與「間位胺基」對反式二苯乙烯的 光化學行為的影響-間位胺基效應 ....................... 30 1-3 N-苯基取代對有機胺化合物的結構與光電性質之影響 ..... 32 1-3-1 含有機胺化合物的在材料上的運用與胺基上取代 基之效應.............................................. 32 1-3-2 N-苯基取代對反式-4-二苯乙烯胺的光化學行為的 影響-胺基共軛效應 ................................... 34 1-4 扭轉分子內電荷轉移(TICT) ......................... 39 1-4-1 分子內電荷轉移(ICT) .......................... 40 1-4-2 4DMABN 與TICT .................................. 40 1-4-3 pDCS 與TICT..................................... 48 第二章 對位二苯乙烯胺衍生物之研究 ...................... 55 2-1 對位N-芳基取代的二苯乙烯胺ICT 行為的研究 ........... 55 2-1-1 研究動機 ....................................... 55 2-1-2 p1R 系列化合物的合成 ........................... 56 2-1-3 p1R 系列化合物的吸收光譜 ....................... 57 2-1-4 p1R 系列化合物的螢光光譜 ....................... 60 2-1-5 p1R 系列化合物螢光的溶劑效應與溫度效應 ......... 61 2-1-6 p1R 系列化合物的螢光量子產率 ................... 65 2-1-7 p1R 系列化合物的異構化量子產率 ................. 69 2-1-8 p1R 系列化合物的螢光生命期 ..................... 71 2-1-9 p1R 系列化合物的ICT 行為之比較 ................. 73 2-1-10 化合物p1OM、p1CO 與p1CN 的TICT 行為之 探討 ................................................. 76 2-1-11 化合物pDS 的TICT 假說之檢討 ................... 82 2-1-12 2-1 節結論(p1R 的ICT 行為之研究) ............ 83 2-2 D-A 反式二苯乙烯光誘導分子內電荷轉移的研究 ......... 85 2-2-1 研究動機 ....................................... 85 2-2-2 p2 與p2R 系列化合物的合成 ...................... 87 2-2-3 p2 與p2R 系列化合物的吸收光譜 .................. 88 2-2-4 p2 與p2R 系列化合物的螢光光譜 .................. 90 2-2-5 p2 與p2R 系列化合物螢光的溶劑效應與溫度效 應 ................................................... 90 2-2-6 p2 與p2R 系列化合物的螢光與異構化量子產率 ...... 93 2-2-7 p2 與p2R 系列化合物的螢光生命期................. 95 2-2-8 p2 與p2R 系列化合物ICT 行為之探討 ............. 100 2-2-9 pDCS 在激發態行為之探討 ....................... 107 2-2-10 pDNS 在激發態行為之探討 ...................... 109 2-2-11 2-2 節結論(D-A 反式二苯乙烯ICT 行為的研 究) ................................................ 113 第三章 間位二苯乙烯胺衍生物之研究 ..................... 115 3-1 當「間位胺基效應」遇上「胺基共軛效應」 ............ 115 3-1-1 研究動機 ...................................... 115 3-1-2 mAS、mDS 與m1 系列化合物的合成 ................ 117 3-1-3 mAS、mDS 與m1 系列化合物的吸收光譜 ............ 118 3-1-4 mAS、mDS 與m1 系列化合物的螢光光譜 ............ 121 3-1-5 mAS、mDS 與m1 系列化合物螢光的溶劑效應與 溫度效應 ............................................ 123 3-1-6 mAS、mDS 與m1 系列化合物的螢光與異構化量 子產率 .............................................. 126 3-1-7 mAS、mDS 與m1 系列化合物的螢光生命期 .......... 129 3-1-8 「間位胺基共軛效應」對吸收與螢光光譜的影響 .... 129 3-1-9 「間位胺基共軛效應」對螢光與異構化量子產率 的影響 .............................................. 133 3-1-10 mAS、mDS 與m1 系列化合物的架橋化合物 ......... 135 3-1-11 3-1 節結論(當「間位胺基效應」遇上「胺基共 軛效應」) .......................................... 140 3-2 「間位共軛」對二苯乙烯胺ICT 態扭轉行為的影響 ...... 141 3-2-1 研究動機 ...................................... 141 3-2-2 m1R 系列化合物的吸收光譜 ...................... 143 3-2-3 m1R 系列化合物的螢光光譜 ...................... 147 3-2-4 m1R 系列化合物螢光的溶劑效應 .................. 149 3-2-5 m1R 架橋化合物的吸收與螢光光譜 ................ 151 3-2-6 PABN 系列化合物的吸收與螢光光譜 ............... 153 3-2-7 m1R 系列、m1R 架橋化合物的螢光與異構化量 子產率 .............................................. 155 3-2-8 m1R 系列、m1R 架橋與PABN 系列化合物的螢 光生命期............................................. 158 3-2-9 m1R 與p1R 系列化合物的共軛作用力之比較 ........ 162 3-2-10 m1R 系列化合物TICT 行為的探討 ................ 164 3-2-11 能階圖 ....................................... 168 3-2-12 扭轉能量障礙的起因 ........................... 175 3-2-13 m2R 化合物TICT 行為的探討 .................... 179 3-2-14 其他取代的m1R 化合物 ......................... 181 3-2-15 3-2 節結論(「間位共軛」對二苯乙烯胺ICT 態 扭轉行為的影響) .................................... 184 第四章 二胺基二苯乙烯衍生物的研究 ..................... 187 4-1 研究動機 .......................................... 187 4-2 吸收光譜 .......................................... 190 4-3 螢光光譜 .......................................... 193 4-4 螢光的溶劑效應與溫度效應 .......................... 194 4-5 螢光與異構化量子產率 .............................. 198 4-6 螢光生命期 ........................................ 200 4-7 討論 .............................................. 204 4-8 結論(二胺基二苯乙烯衍生物的研究) ................ 213 第五章 實驗部分 ....................................... 215 5-1 實驗藥品 .......................................... 215 5-2 化合物結構的鑑定 .................................. 219 5-3 化合物光化學性質之量測 ............................ 220 5-4 理論計算 .......................................... 226 5-5 化合物合成的一般步驟 .............................. 227 5-6 化合物結構相關光譜數據 ............................ 231 參考文獻 .............................................. 249 附圖(表) ............................................ 261

    1. 宋心琦、周福添、劉劍波,光化學;五南圖書出版股份有限公司;2004。
    2. Turro, N. J. Modern Molecular Photochemistry, University Science Books Press: Sausalito, California, 1991.
    3. Parker, C. A. Photoluminescence of Solutions, Elsevier: New York, 1968.
    4. Skoog, D. A.; Holler, E. J.; Nieman, T.A. Principles of Instrumental Analysis, 5th ed.; Saunders College Publishing, 1998.
    5. Conn, E.E.; Strumpf, P. K.; Bruening, G.; Roi, R.H. 生物化學;趙世彬譯;藝軒圖書出版社;台北,1989。
    6. Waldeck, D. H. Chem. Rev. 1991, 91, 415-436.
    7. (a) Saltiel, J.; Charlton, J. L. Rearrangements in Ground and Excited States; deMayo, P., ed.; Academic Press: New York, 1980; Vol. 3, pp 25-89. (b) Saltiel, J.;
    Sun, Y.-P. Photochromism, Molecules and Systems; Durr, H., Boaus-Laurent; H.,Eds.; Elsevier: Amsterdam, 1990; pp 64-164.
    8. Gorner, H.; Kuhn, H. J. Adv. Photochem. 1995, 19, 1-117.
    9. (a) Saltiel, J.; Megarity, E. D.; Kneipp, K. G. J. Am. Chem. Soc. 1966, 88, 2336-2338. (b) Saltiel, J. J. Am. Chem. Soc. 1967, 89, 1036-1037.
    10. Saltiel, J.; Marinari, A.; Chang, D. W.-L.; Mitchener, J. C.; Megarity, E. D. J. Am. Chem. Soc. 1979, 101, 2982-2996.
    11. Grossman, R. B. The Art of Writing Reasonable Organic Reaction Mechanisms;Springer-Verlag: New York, Inc. 1999, pp 145-147.
    12. Muszkat, K. A.; Fischer, E. J. Chem. Soc. B 1967, 662-678.
    13. Malkin, S.; Fischer, E. J. Phys. Chem. 1964, 68, 1153-1163.
    14. (a) Hub, W., Schneider, S., D?rr, F., Oxman, J. D., Lewis, F. D. J. Am. Chem. Soc. 1984, 106, 701-708. (b) Hub, W., Schneider, S., Durr, F., Oxman, J. D., Lewis, F.
    D. J. Am. Chem. Soc. 1984, 106, 708-715.
    15. Saltiel J.; Waller, A. S.; Sears, D. F., Jr.; Garrett, C. Z. J. Phys.Chem. 1993, 97, 2516-2522.
    16. (a) Gegiou, D.; Muszkat, K. A.; Fischer, E. J. Am. Chem. Soc. 1968, 90, 12-18. (b) Gegiou, D.; Muszkat, K. A.; Fischer, E. J .Am. Chem. Soc. 1968, 90, 3907-3918.
    (c) G?rner, H.; Schulte-Frohlinde, D. J . Phys. Chem. 1979, 83, 3107-3118. (d) Saltiel, J.; Marinari, A,; Chang, D. W. L.; Mitchener, J. C.; Megarity, E. D. J. Am. Chem. Soc. 1979, 101, 2982-2996.
    17. Gorner, H. Ber. Bunsen.-Ges. Phys. Chem. 1984, 88, 1199 and references therein.
    18. Crompton, E. M.; Lewis F. D. Photochem. Photobiol. Sci. 2004, 3, 660-668 and references therein.
    19. Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S. J. Am. Chem. Soc. 1999, 121, 12045-12053.
    20. (a) Gruen, H.; Gorner, H. Z. Naturorsch. 1983, 38a, 928-936. (b) Gorner, H.; Gruen, H. J. Photochem. 1985, 28, 329-350. (c) Gruen, H.; Gorner, H. J. Phys. Chem. 1989,
    93, 7144-7152.
    21. Rettig, W.; Majenz, W. Chem. Phys. Lett. 1989, 154, 335-341.
    22. (a) Bokeriya, E. N.; Viktorova, V. S.; Karegishvili, L.I.; Kovyrzina, K. A.; Kushakevich, Y. P.; Radaikina, L. A. J. Org. Chem. USSR (Engl. Transl.), 1979, 15, 1944-
    1949. (b) Nakatsuji, S.; Matsuda, K.; Uesugi, Y.; Nakashima, K. Akiyama, S.; Katzer, G.; Fabian, W. J. Chem. Soc., Perkin Trans. 2 1991, 861-867.
    23. Coulson, C.A. Proc. Phys. Soc. (Lond.) 1948, 60, 257-269.
    24. Slaughter, B. D.; Allen, M. W.; Lushington, G. H.; Johnson, C. K. J. Phys. Chem. A 2003, 107, 5670-5680.
    25. (a) Klevens, H. B.; Platt, J. R. J. Chem. Phys. 1949, 17, 470-483. (b) Platt, J. R. J. Chem. Phys. 1949, 17, 484-495.
    26. (a) Nijegorodov, N. I.; Downey,W. S.; Danailov, M. B. Spectrochim. Acta, A 2000, 56, 783-795. (b) Mabbs, R.; Nijegorodov, N.; Downey, W. S. Spectrochim. Acta, A 2003, 59, 1329-1339.
    27. Melinger, J. S.; Pan, Y.; Kleiman, V. D.; Peng, Z.; Davis, B. L.; McMorrow, D.; Lu, M. J. Am. Chem. Soc. 2002, 124, 12002-12012.
    28. Tammer, M.; Horsburgh, L.; Monkman, A. P.; Brown, W.; Burrows, H. D. Adv. Funct. Mater. 2002, 12, 447-454.
    29. Kopelman, R.; Shortreed, M. R.; Shi, Z. Y.; Tan, W.; Xu, Z.; Moore, J. S. Phys. Rev. Lett. 1997, 78, 1239-1242.
    30. Yang, J.-S.; Lee, Y.-R.; Yan, J.-L.; Lu, M.-C. Org. Lett. 2006, 8, 5813-5816.
    31. Kanibolotsky, A. L.; Berridge, R.; Skabara, P. J.; Perepichka, I. F.; Bradley, D. D. C.; Koeberg, M. J. Am. Chem. Soc. 2004, 126, 13695-13702.
    32. Lewis, F. D.; Yang, J.-S. J. Am. Chem. Soc. 1997, 119, 3834-3835.
    33. (a) Lewis, F. D.; Weigel, W. J. Phys. Chem. A 2000, 104, 8146-8153. (b) Lewis, F. D.; Weigel, W.; Zuo, X. J. Phys. Chem. A 2001, 105, 4691-4696.
    34. Saltiel, J.; Waller, A. S.; Sears, D. F., Jr. J. Am. Chem. Soc. 1993, 115, 2453- 2465.
    35. Dewar, M. J. S.; Landman, D. J. Am. Chem. Soc. 1977, 99, 7439-7445.
    36. (a) Bedworth, P. V.; Cai, Y.; Jen, A.; Marder, S. R. J. Org. Chem. 1996, 61, 2242-2246. (b) Verbiest, T.; Burland, D. M.; Jurich, M. C.; Lee, V. Y.; Miller, R. D.;
    Volksen, W. Science, 1995, 268, 1604-1606. (c) Gilmour, S.; Montgomery, R. A.; Marder, S. R.; Cheng, L.-T.; Jen, A. K.-Y.; Cai, Y.; Peny, J. W.; Dalton, L. R. Chem. Mater. 1994, 6, 1603-1604. (d) Marder, S. R.; Perry, J. W. Science, l994, 263, 1706-1707. (e) Whitaker, C. M.; Patterson, E. V.; Kott, K. L.; McMahon, R. J. J. Am. Chem. Soc. 1996, 18, 9966-9973.
    37. Sakanoue, K.; Motoda, M.; Sugimoto, M.; Sakaki, S. J. Phys. Chem. A 1999, 103, 5551-5556.
    38. (a) Pacansky, J.; Waltman, R.J.; Seki, H. Bull. Chem. Soc. Jpn. 1997, 70, 55-59. (b) Kitamura, T.; Yokoyama, M. J. Appl. Phys. 1991, 69, 821-826.
    39. Moylan, C. R.; Twieg, R. J.; Lee, V. Y.; Swanson, S. A.; Betterton, K. M.; Miller, R. D. J. Am. Chem. Soc. 1993, 115, 12599-12600.
    40. (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799-801. (b) Adachi, C.: Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489-1491.
    41. Yang, J.-S.; Chiou, S.-Y.; Liau, K.-L. J. Am. Chem. Soc. 2002, 124, 2518-2527.
    42. 邱詩怡,含N-芳基取代對-二苯乙烯胺之合成與光化學性質之研究,國立中央大學碩士論文,2001。
    43. Yang, J.-S.; Wang, C.-M.; Hwang, C.-Y.; Liau, K.-L.; Chiou, S.-Y. Photochem. Photobiol. Sci. 2003, 2, 1225-1231.
    44. Yang, J.-S.; Lin, Y.-H.; Yang, C.-S. Org. Lett. 2002, 4, 777-780.
    45. Yang, J.-S.; Lin, Y.-D.; Lin, Y.-H.; Liao, F.-L. J. Org. Chem. 2004, 69, 3517-3525.
    46. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Chem. Rev. 2003, 103, 3899-4031.
    47. Rettig, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 971-988.
    48. Lippert, E.; Luder, W.; Moll, F.; Nagele, W.; Boos, H.; Prigge, H.; Seibold-Blankentein, I. Angew. Chem. 1961, 73, 695-706.
    49. Rotkiewicz, K.; Grellmann, K. H.; Grabowski, Z. R. Chem. Phys. Lett. 1973, 19, 315-318.
    50. Rettig, W.; Bliss, B.; Dirnberger, K. Chem. Phys. Lett. 1999, 305, 8-14.
    51. Dobkowski, J.; Michl, J.; Waluk, J. Phys. Chem. Chem. Phys. 2003, 5, 1027-1031.
    52. Serrano-Andres, L.; Merchan J.; Roos, B. O.; Lindh, R. J. Am. Chem. Soc. 1995, 117, 3189-3204.
    53. (a) Rettig, W.; Zietz, B. Chem. Phys. Lett. 2000, 317, 187-196. (b) Rettig, W.; Lutze, S. Chem. Phys. Lett. 2001, 341, 263-271. (c) Rotkiewicz, K.; Rettig, W.; Detzer, N.; Rothe, A. Phys. Chem. Chem. Phys. 2003, 5, 998-1002.
    54. (a) Sobolewski, A. L.; Domcke, W. Chem. Phys. Lett. 1996, 250, 428-436. (b) Sobolewski, A. L.; Domcke, W. Chem. Phys. Lett. 1996, 259, 119-127.
    55. Schuddeboom, W.; Jonker, S. A.; Warman, J. M.; Leinhos, U.; Kuhnle, W.; Zachariasse, K. A. J. Phys. Chem. 1992, 96, 10809-10819.
    56. (a) Zachariasse, K. A.; Grobys, M.; von der Haar, T.; Hebecker A.; Il’ichev, Y. V.; Jiang, Y.-B.; Morawski, O.; Kuhnle, W. J. Photochem. Photobiol. A: Chem. 1996, 102, 59-70. (b) Zachariasse, K. A. Chem. Phys. Lett. 2000, 320, 8-13. (c) Demeter, A.; Zachariasse, K. A. Chem. Phys. Lett. 2003, 380, 699-703. (d) Zachariasse, K. A.; Druzhinin, S. I.; Bosch, W.; Machinek, R. J. Am.Chem. Soc. 2004, 126, 1705-1715.
    57. Zilberg, S.; Haas, Y. J. Phys. Chem. A 2002, 106, 1-11.
    58. Cogan, S.; Zilberg, S.; Haas, Y. J. Am. Chem. Soc. 2006, 128, 3335-3345.
    59. Dreyer, J.; Kummrow, A. J. Am. Chem. Soc. 2000, 122, 2577-2585.
    60. Lapouyade, R.; Czeschka, K.; Majenz, W.; Rettig, W.; Gilabert, E.; Rulliere, C. J. Phys. Chem. 1992, 96, 9643-9650.
    61. (a) Gilabert, E.; Lapouyade, R.; Rulliere, C. Chem. Phys. Lett. 1988, 145, 262-268. (b) Abraham, E.; Oberle, J.; Jonusauskas, G.; Lapouyade, R.; Rulliere, C. J. Photochem. Photobiol., A 1997, 105, 101-107. (c) Abraham, E.; Oberle, J.; Jonusauskas, G.; Lapouyade, R.; Rulliere, C. Chem. Phys. 1997, 214, 409-423. (d) Pines, D.; Pines, E.; Rettig, W. J. Phys. Chem. A 2003, 107, 236-242.
    62. Letard, J.-F.; Lapouyade, R.; Rettig W. J. Am. Chem. Soc. 1993, 115, 2441-2447. (b) Lapouyade, R.; Kuhn, A.; Letard, J.-F.; Rettig, W. Chem. Phys. Lett. 1993, 208, 48-58.
    63. Lee, B. H.; Marvel, C. S. J. Polym. Sci. Chem. Ed. 1982, 20, 393-399.
    64. Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046-2067.
    65. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805-818.
    66. 廖康廩,取代基效應對反式-4-(N-苯基)二苯乙烯胺之光化學行為影響之研究,國立中央大學碩士論文,2002。
    67. Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y. J. Am. Chem. Soc. 2004, 126, 12325-12335.
    68. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am.Chem. Soc. 1985, 107, 3902-3909.
    69. Zerner, M. C.; Leow, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T. J. Am. Chem. Soc. 1980, 102, 589-599.
    70. Baumann, W.; Bischof, H.; Frohling, J.-C.; Brittinger, C.; Rettig, W.; Rotkiewicz, K. J. Photochem. Photobiol., A 1992, 64, 49-72.
    71. Marcus, Y. Chem. Soc. Rev. 1993, 22, 409-416.
    72. 王親民,反式-4-(N-芳基)二苯乙烯胺的激發態結構與螢光性質之研究,國立中央大學碩士論文,2004。
    73. Yang, J.-S.; Liau, K.-L.; Hwang, C.-Y. ; Wang, C.-M. J. Phys. Chem. A 2006, 110, 8003-8010.
    74. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.
    75. (a) Lewis, F. D.; Zuo, X. J. Am. Chem. Soc. 2003, 125, 2046-2047. (b) Lewis, F. D.; Zuo, X. J. Am. Chem. Soc. 2003, 125, 8806-8813.
    76. Rettig, W.; Strehmel, B.; Majenz, W. Chem. Phys. 1993, 173, 525-537.
    77. Papper, V.; Pines, D.; Likhtenshtein, G.; Pines, E. J. Photochem. Photobiol., A 1997, 111, 87-96.
    78. 李俊誼,間位-二苯乙烯胺衍生物之合成與光誘導分子內電荷轉移性質之研究,國立台灣大學碩士論文,2007。
    79. Bellamy, F. D.; Ou, K. Tetrahedron Lett. 1984, 25, 839-842.
    80. Borch, R. F.; Hassid, A. I. J. Org. Chem. 1972, 37, 1673-1674.
    81. Yang, J.-S.; Liau, K.-L.; Tu, C.-W.; Hwang, C.-Y. J. Phys. Chem. A 2005, 109, 6450-6456.
    82. Sinha, H. K.; Yates, K. J. Am. Chem. Soc. 1991, 113, 6062-6067.
    83. Karabunarliev, S.; Baumgarten, M.; Tyutyulkov, N.; Mullen, K. J. Phys. Chem. 1994, 98, 11892-11901.
    84. Findley, G. L.; Carsey, T. P.; McGlynn, S. P. J. Am. Chem. Soc. 1979, 101, 4511-4517.
    85. Meier, H.; Zertani, R.; Noller, K.; Oelkrug, D.; Krabichler, G. Chem. Ber. 1986, 119, 1716-1724.
    86. (a) Gaab, K. M.; Thompson, A. L.; Xu, J.; Martinez, T. J.; Bardeen, C. J. J. Am. Chem. Soc. 2003, 125, 9288-9289. (b) Thompson, A. L.; Gaab, K. M.; Xu, J.; Bardeen, C. J.; Martinez, T. J. J. Phys. Chem. A 2004, 108, 671-682.
    87. See Supporting Information of Reference 81.
    88. Wilhelm, H. E.; Gebert, H.; Regenstein, W. Z. Naturforsch. 1997, 52a, 837-842.
    89. Seliskar, C. J.; Khalil, O. S.; McGlynn, S. S. in Excited States I; Lim, E. C., Ed.; Academic Press: New York, 1974; pp 231-294.
    90. Scheps, R.; Florida, D.; Rice, S. A. J. Chem. Phys. 1974, 61, 1730-1747.
    91. Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. Pure Appl. Chem. 1965, 11, 371-392.
    92. Dieck, H. A.; Heck, R. F. J. Am. Chem. Soc. 1974, 96, 1133-1136.
    93. For examples, see: (a) Sluch, M. I.; Godt, A.; Bunz, U. H. F.; Berg, M. A. J. Am. Chem. Soc. 2001, 123, 6447-6448. (b) Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou,
    S.-Y.; Liau, K.-L.; Tsai, H.-H. ; Lee, G.-H.; Peng. S.-M. J. Am. Chem. Soc. 2006, 128, 14109-14119.
    94. Bangal, P. R.; Lam, D. M. K.; Peteanu, L. A.; Van der Auweraer, M. J. Phys. Chem. B 2004, 108, 16834-16840. (b) Yamaguchi, Y.; Ochi, T.; Miyamura, S.; Tanaka, T.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z. J. Am. Chem. Soc. 2006, 128, 4504-4505.
    95. (a) Kapelle, S.; Rettig, W.; Lapouyade, R. Chem. Phys. Lett. 2001, 348, 416-424. (b) Kapelle, S.; Rettig, W.; Lapouyade, R. Photochem. Photobiol. Sci. 2002, 1, 492-499.
    96. Thompson, A. L.; Ahn, T. -S.; Thomas, K. R. J.; Thayumanavan, S.; Martinez, T. J.; Bardeen, C. J. J. Am. Chem. Soc. 2005, 127, 16348-16349.
    97. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
    98. (a) Minezawa, N.; Kato, S. J. Phys. Chem. A 2005, 109, 5445-5453. (b) Druzhinin, S. I.; Ernsting, N. P.; Kovalenko, S. A.; Lustres, L. P.; Senyushkina, T. A.; Zachariasse, K. A. J. Phys. Chem. A 2006, 110, 2955-2969.
    99. (a) Amatatsu, Y. Theor. Chem. Acc. 2000, 103, 445-450. (b) Amatatsu, Y. Chem. Phys. 2001, 274, 87-98. (c) Amatatsu, Y. J. Phys. Chem. A 2006, 110, 8736-8743.
    100. Zachariasse, K. A.; von der Haar, T.; Hebecker A.; Leinhhos, U.; Kuhnle, W. Pure Appl. Chem. 1993, 65, 1745-1750.
    101. (a) Jodicke, C. J.; Luthi, H. P. J. Am. Chem. Soc. 2003, 125, 252-264. (b) Jodicke, C. J.; Luthi, H. P. J. Chem. Phys. 2003, 119, 12852-12865.
    102. FuB, W.; Pushpa, K. K.; Rettig, W.; Schmid, W. E.; Trushin, S. A. Photochem. Photobiol. Sci. 2002, 1, 255-262.
    103. Gomez, I.; Reguero, M.; Boggio-Pasqua, M.; Robb, M. A. J. Am. Chem. Soc. 2005, 127, 7119-7129.
    104. 陳孟瑤,二苯乙烯胺分子激發態結構及螢光感應行為之研究,國立中央大學碩士論文,2005。
    105. Dichiarante, V.; Dondi, D.; Protti, S.; Fagnoni, M.; Albini, A. J. Am. Chem. Soc. 2007, 129, 5605-5611 and references therein.
    106. (a) Smit, K. J.; Ghiggino, K. P. Chem. Phys. Lett. 1985, 122, 369-374. (b) Letard, J.-F.; Lapouyade, R.; Rettig, W. Chem. Phys. Lett. 1994, 222, 209-216.
    107. Yang, J.-S.; Hwang, C.-Y. ; Chen, M.-Y. Tetrahedron Lett. 2007, 48, 3097-3102.
    108. Bassler, H.; Schweitzer, B. Acc. Chem.Res., 1999, 32, 173-182.
    109. Dawson, W. R.; Windsor, M. W. J. Phys. Chem. 1968, 72, 3251-3260.
    110. Meech, S. R.; Phillips, D. J. Photochem. 1983, 23, 193-217.
    111. Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed.; Academic Press: New York, 1971.
    112. (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864-B871. (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.
    113. (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261. (b) Hariharan, P. C.; Pople, J. A. Theor. Chem. Acta. 1973, 28, 213-222. (c) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163-168.
    114. Complete Gaussian 03 (Revision B.03) Reference Frisch, M. J.; Trucks, G.. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J.
    A. Jr., Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
    Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
    Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M.
    A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.
    115. Lai, G; Anderson, W. K. Tetrahedron 2000, 56, 2583-2590.
    116. Kosolapoff, G. M. Organo Phosphorus Compounds; 1st ed. John Wiley & Sons. Inc., New York, N. Y. 1950.
    117. (a) Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1738. (b) Wadsworth, W. S., Jr. Org React. 1977, 25, 75-253.
    118. Bance, S.; Barber H. J.; Woolman, A. M. J. Chem. Soc. 1943, 1-4.
    119. Everard, K. B.; Kumar L.; Sutton, L. E. J. Chem. Soc., 1951, 2807-2815.
    120. Gore, P. H.; Kamomah, F. S. Synth. Commun. 1979, 9, 377-382.
    121. Bergmann, F.; Schapiro, D. J. Org. Chem. 1947, 12, 57-66.
    122. Haddow, A.; Harris, R. J. C.; Kon, G. A. R.; Roe, Edna M. F. Phil. Trans. A 1948, 241, 147-195.

    QR CODE
    :::