| 研究生: |
呂紹垣 Shao-Yuan Lyu |
|---|---|
| 論文名稱: |
以ABAQUS模擬粉體之壓實行為 Modelling the compaction behaviour of powders with ABAQUS |
| 指導教授: |
吳柏林
Po-Lin Wu 田永銘 Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 壓實 、粉體 、ABAQUS 、Drucker-Prager/Cap Model |
| 外文關鍵詞: | powder, ABAQUS, Drucker-Prager/Cap Model, compaction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前世界各國主要以單軸壓實法壓製緩衝材料,本研究根據瑞典單軸壓實法之概念,藉以數值方法來探討粉體材料受壓實力下之力學行為,以作為未來緩衝材料之設計參考。
緩衝材料塊體一般可分為盤形、扇形及環形等形狀,本研究嘗試利用粉體受壓實力作用下產生之應變硬化模式(Drucker-Prager/Cap Model),建立至大型的非線性有限元素分析軟體(ABAQUS)中,利用合理的分析條件及適當的材料參數,針對三種不同形狀之緩衝材料塊體進行數值模擬,探討不同外形之緩衝材料塊體於壓實過程中之力學行為差異。
此外,緩衝材料塊體壓製過程中,材料與模具間會產生壁面摩擦力,單純的施加壓實應力與密度之關係並無法真正表現粉體之壓實特性,故須找出不受試驗條件影響之無壁面摩擦力壓縮曲線。本數值模擬分別以摩擦係數為零之方式及平均壓實應力法求取無壁面摩擦力壓縮曲線,並與前人所做之試驗結果加以比較,驗證數值分析模式之可行性及適用性。
Many nations take advantage of uniaxial compaction to produce buffer materials. This research aims to discuss the mechanical behavior of powders in compaction with numerical method.
The buffer material blocks usually have three shapes, inculding disk, fan, and ring. With rational consideration and appropriate material parameters in finite elements analysis(ABAQUS), this research attempts to distinguish the diversity among these buffer material blocks. Drucker-Prager/Cap Model was chosen as the yield surface of the medium, which represents the failure and yield behaviors.
In addition, as the buffer material blocks in the process of compaction, it will produce wall friction between the block and the die. The relationship between compaction stress and density cannot reveal the characteristics of the powders in compaction. It’s necessary to find out the friction-free curve that without limited in the experimental conditions. This research use zero as the coefficient of friction and average integral method to get friction-free curve, and make these results to compare with the former researches in order to verify the feasibility of numerical analysis.
[1] 田永銘,「緩衝材料之壓實性質與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告,中壢 (2003)
[2] 吳柏林,「放射性廢料處置場中砂-皂土混合物緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢 (2005)
[3] 林青瑩,「環狀地盤改良後基樁之側向變形特性」,碩士論文,國立中央大學土木工程研究所,中壢 (2005)
[4] 邱太銘,「放射性廢棄物管理」,中興工程科技研究發展基金會,台北 (2002)
[5] 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第 44-54 頁,(2000)
[6] 莊育蓁,「軟弱岩石潛盾及推進工程之有限元素分析」,碩士論文,國立中興大學土木工程研究所,台中 (2005)
[7] 郭明峰,「皂土-碎石混合物之壓實性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2004)
[8] 陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)
[9] 愛發股份有限公司,ABAQUS實務入門引導,全華科技圖書股份有限公司,台北 (2005)
[10] Adams, M. J., McKeown, R., “Mocromechanical analysis of the pressure-volume relationships for powders under confined uniaxial compression,” Powder Technology, Vol. 88, pp. 155-163 (1996).
[11] Aydin, I., B. J. Briscoe, and K. Y. Sanliturk, “Internal form of compacted ceramic components : A comparison of a finite element modelling with experiment,” Powder Technology, Vol. 89, No. 3, pp. 239-254 (1996).
[12] Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
[13] Briscoe, B. J., and Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A : Physicochemical and Engineering Aspects, Vol. 137, pp. 103-116 (1998).
[14] Chinh, P. D., “Weighted self-consistent approximations for elastic completely random mixtures,” Mechanics of Materials, Vol. 32, pp. 463-470 (2000).
[15] Christensen, R. M., “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
[16] Coube, O., A. C. F. Cocks, and C. Y. Wu, “Experimental and numerical study of die filling, powder transfer and die compaction,” Powder Metallurgy, Vol. 48, No. 1, pp. 68-76 (2005).
[17] Coube, O. and H. Riedel, “Numerical simulation of metal powder die compaction with special consideration of cracking,” Powder Metallurgy, Vol. 43, No. 2, pp. 123-131 (2000).
[18] Denny, P. J., “Compaction equations : a comparison of the Hechel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
[19] Johannesson L. E., “Compaction of full size blocks of bentonite for the KBS-3 concept – initial tests for the evaluating the technique,” SKB technical report R 99-66, Swedish, (1999).
[20] Falgon, D., E. Vidal-Salle, J.-C. Boyer, R. Peczalski, and J. Andrieu, “Identification procedure of a hardening law for powder compaction,” Powder Technology, Vol. 157, No. 1-3, pp. 183-190 (2005).
[21] Figliola, R. S., and Beasley, D. E., Theory and Design for Mechanical Measurements. John Wiley & Sons, U.S., (1995).
[22] Foo, Y. Y., Y. Sheng, and B. J. Briscoe, “An experimental and numerical study of the compaction of alumina agglomerates,” International Journal of Solids and Structures, Vol. 41, No. 21, pp. 5929-5943 (2004).
[23] Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die,” Powder Metallurgy, Vol. 44, No. 1, pp. 25-33 (2001).
[24] Hibbitt, Karlsson and Sorensen, ABAQUS Version 6.5 User''s Manual,U.S., (2005).
[25] Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics, Vol. 50, pp. 481-505 (1983).
[26] Japan Nuclear Cycle Development Institute, “Repository design and engineering technology,” JNC Supporting Report 2, Japan, (1999).
[27] Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., “Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4,” SKB technical report TR 00-14, Swedish, (2000).
[28] Johannesson, L. E., Börgesson, L., Sanden, T., “Compaction of bentonite blocks – development of technique for industrial production of blocks which are manageable by man,” SKB technical report TR 95-19, Swedish, (1995).
[29] Justino, J. G., M. K. Alves, A. N. Klein, and H. A. Al-Qureshi, “Constitutive model for the elastic-plastic analysis of porous sintered materials,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 14, pp. 1471-1479 (2004).
[30] Kadiri, M. S., A. Michrafy, and J. A. Dodds, “Pharmaceutical powders compaction: Experimental and numerical analysis of the density distribution,” Powder Technology, Vol. 157, No. 1-3, pp. 176-182 (2005).
[31] Kim, H. S., S.-T. Oh, and J.-S. Lee, “Constitutive model for cold compaction of ceramic powder,” Journal of the American Ceramic Society, Vol. 85, No. 8, pp. 2137-2138 (2002).
[32] Kim, K. T., S. C. Lee, and H. S. Ryu, “Densification behavior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction,” Materials Science and Engineering A, Vol. 340, No. 1-2, pp. 41-48 (2003).
[33] Klemm, U., Sobek, D., Schone, B., and Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145 (1997).
[34] Kraft, T. and H. Riedel, “Numerical simulation of die compaction and sintering,” Powder Metallurgy, Vol. 45, No. 3, pp. 227-231 (2002).
[35] Lee, S. C. and K. T. Kim, “Densification behavior of aluminum alloy powder under cold compaction,” International Journal of Mechanical Sciences, Vol. 44, No. 7, pp. 1295-1308 (2002).
[36] Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder Technology, Vol. 87, pp. 259-267 (1996).
[37] Ltd, W. L. w. A., “Buffer and backfilling systems for a nuclear fuel waste disposal vault,” AECL technical record TR-341, Canada, (1985).
[38] Macleod, H. M., and Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122 (1977).
[39] Marcial, D., Delage, P., and Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
[40] Mclaughlin, R., “A study of the differential scheme for composite materials,” Int. J. Engng. Sci, Vol. 15, pp. 237-244 (1977).
[41] Michrafy, A., J. A. Dodds, and M. S. Kadiri, “Wall friction in the compaction of pharmaceutical powders: Measurement and effect on the density distribution,” Powder Technology, Vol. 148, No. 1, pp. 53-55 (2004).
[42] Michrafy, A., D. Ringenbacher, and P. Tchoreloff, “Modelling the compaction behaviour of powders: Application to pharmaceutical powders,” Powder Technology, Vol. 127, No. 3, pp. 257-266 (2002).
[43] Nedderman, R. M., Statics and kinematics of granular materials. Cambridge University Press, U.K., (1992).
[44] Nemat-Nasser, S., Hori, M., Micro-mechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam, (1993).
[45] Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of materials, Vol. 4, pp. 1-16 (1985).
[46] Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations, Vol. 38, No. 4, pp. 17-29 (1998).
[47] Panelli, R., Filho, F. A., “A study of a new phenomenological compacting equation,” Powder Technology, Vol. 114, pp. 255-261 (2001).
[48] Park, H. and K. T. Kim, “Consolidation behavior of SiC powder under cold compaction,” Materials Science and Engineering A : Structural Materials: Properties, Microstructure and Processing, Vol. 299, No. 1-2, pp. 116-124 (2001).
[49] Push, R., “The buffer and backfill handbook part 1:definitions, basic relationships, and laboratory methods,” SKB technical report TR 02-20, Swedish (2002).
[50] Push, R., “The buffer and backfill handbook part 2:materials and techniques,” SKB technical report TR 02-12, Swedish (2002).
[51] Reiterer, M., T. Kraft, U. Janosovits, and H. Riedel, “Finite element simulation of cold isostatic pressing and sintering of SiC components,” Ceramics International, Vol. 30, No. 2, pp. 177-183 (2004).
[52] Roure, S., Bouvard, D., Doremus, P., and Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, No. 2, pp. 164-170 (1999).
[53] Sinka, I. C., J. C. Cunningham, and A. Zavaliangos, “The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: A validation study of the Drucker-Prager Cap model,” Powder Technology, Vol. 133, No. 1-3, pp. 33-43 (2003).
[54] Smith, L. N., P. S. Midha, and A. D. Graham, “Simulation of metal powder compaction, for the development of a knowledge based powder metallurgy process advisor,” Journal of Materials Processing Technology, Vol. 79, No. 1-3, pp. 94-100 (1998).
[55] Stanley-Wood, N. G., Enlargement and compaction of particulate solids. Butterworths, U.K., (1983).
[56] Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Roc, pp. 187-194 (2004).
[57] Tien, Y. M., P. L. Wu, W. S. Chuang, and L. H. Wu, “Micromechanical model for compaction characteristics of bentonite-sand mixtures,” Applied Clay Science, Vol. 26, No. 1-4, pp. 489-498 (2004).
[58] Wu, C. Y., O. M. Ruddy, A. C. Bentham, B. C. Hancock, S. M. Best, and J. A. Elliott, “Modelling the mechanical behaviour of pharmaceutical powders during compaction,” Powder Technology, Vol. 152, No. 1-3, pp. 107-117 (2005).
[59] Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structure, Vol. 2, pp. 1-8 (1966).
[60] Yang, H. C., J. K. Kim, and K. T. Kim, “Rubber isostatic pressing and cold isostatic pressing of metal powder,” Materials Science and Engineering A, Vol. 382, No. 1-2, pp. 41-49 (2004).
[61] Yong, R. N., Boonsinsuk, P., and Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol. 23, pp. 216-228 (1986).
[62] Zahlan, N., D. T. Knight, A. Backhouse, and G. A. Leiper, “Modelling powder compaction and pressure cycling,” Powder Technology, Vol. 114, No. 1-3, pp. 112-117 (2001).
[63] Zhao, X. H., Chen, W. F., “The effective elastic moduli of concrete and composite materials,” Composites Part B, Vol. 29B, pp. 31-40 (1998).