跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂冠佑
Guan-you Lu
論文名稱: L型LiNbO3偏振旋轉器波導研究
Study of L-Shaped LiNbO3 Waveguide Polarization Convertor
指導教授: 陳啟昌
Chii-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 73
中文關鍵詞: L型偏振旋轉器波導鈮酸鋰偏振旋轉器
外文關鍵詞: L shape waveguide, LiNbO3, polarization convertor
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於LiNbO3材料具有良好的耐酸耐鹼性能及顯著的電光效應,已廣泛應用於商用的光調制器產品中。本研究主要探討了波導材料為鈮酸鋰(LiNbO3)的L型偏振旋轉器,利用其折射率的各向異性來旋轉波導內入射光的偏振方向。我們使用有限時域差分法來模擬偏振光在波導中的傳輸的強度與偏振的變化。分析了不同尺寸的L型波導結構,經優化後,可達到近90o的偏振旋轉效果。並且為了減少優化L型波導結構尺寸所花費的時間,我們亦使用雙波導耦合的公式,推導出可用於計算L型偏振旋轉器波導的偏振旋轉率公式。只需將使用半向量光束傳播法(Semi-Vector Beam Propagation Method)所計算出之有效折射率視為未擾動的結果,並將全向量有限元素法(Full-Vector Beam Propagation Method)所計算出之有效折射率視為受擾動的結果,代入模態耦合公式中,即可精確計算偏振旋轉率。並且計算在波導中施加電場改變折射率後,偏振光的旋轉角度。計算了調整輸出光偏振方向所需之電壓強度。從而分析電控調制偏振在L型鈮酸鋰偏振旋轉器波導中的可行性。


    LiNbO3 material is widely used in commercial optical modulators due to its exceptional acid and alkali resistance, as well as its strong electro-optic effect. This study examines an L-shaped polarization convertor made of LiNbO3 waveguide material, utilizing its refractive index anisotropy to rotate the polarization direction of incident light within the waveguide. We employed the Finite-Difference Time-Domain (FDTD) method to simulate changes in transmission intensity and polarization of the light within the waveguide. Various sizes of L-shaped waveguide structures were analyzed, and after optimization, nearly 90° polarization rotation was achieved.
    To minimize the time spent optimizing the waveguide structure, we derived a formula for calculating the polarization rotation using the coupled waveguide equation. The effective refractive index, calculated with the Semi-Vector Beam Propagation Method, was treated as the unperturbed result, simplifying the calculation. Meanwhile, the effective refractive index from the Full-Vector Beam Propagation Method was treated as the perturbed result, enabling accurate calculation of the polarization rotation rate using the mode coupling formula. Additionally, we calculated the polarization rotation angle after applying an electric field to change the refractive index in the waveguide. We also determined the voltage required to adjust the output light’s polarization direction. This allowed us to evaluate the feasibility of electrically controlling polarization modulation in the L-shaped LiNbO3 waveguide polarization convertor.

    摘要 II ABSTRACT III 謝誌 V 目錄 VI 圖目錄 I 表目錄 III 第1章 緒論 1 1.1偏振旋轉器簡介 1 1.1.1 L型波導偏振旋轉器 2 1.2鈮酸鋰晶體介紹 4 1.3 結論 6 第2章 理論與波導耦合之設計 7 2.1有限時域差分法 7 2.2 鈮酸鋰L型偏振旋轉器波導模擬簡介 12 2.3 波導耦合理論 17 2.3.1波導耦合公式 17 2.4全向量光束傳播法 30 2.5半向量光束傳播法 32 2.6鈮酸鋰L型偏振旋轉器耦合能力計算方法 34 2.6.1 是否受波導的雙折射效應影響 35 2.6.2 Ex方向和Ey方向模態的有效折射率與相互之耦合能力需要相似 37 2.7鈮酸鋰晶體的電光效應 43 2.8結論 45 第3章 鈮酸鋰L型偏振旋轉器設計結果分析 48 3.1 結構掃描 49 3.2 有限時域差分法掃描結構結果 50 3.3理論模態計算結果 52 3.4結果討論 54 3.5電控調制之偏振旋轉器 54 3.6結論 56 第4章 總結和未來展望 58 4.1總結 58 4.2未來展望 60 參考文獻 61

    1. Gallacher, K., et al., Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. APL Photonics, 2022. 7(4).
    2. Crossley, W.A., et al., Faraday Rotation in Rare-Earth Iron Garnets. Physical Review, 1969. 181(2): p. 896-904.
    3. Hameed, M.F.O., F.F.K. Hussain, and S.S.A. Obayya, Ultracompact Polarization Rotator Based on Liquid Crystal Channel on Silicon. Journal of Lightwave Technology, 2017. 35(11): p. 2190-2199.
    4. Lu, Y.-Q., et al., Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Applied Physics Letters, 2000. 77(23): p. 3719-3721.
    5. Chen, C.-C., Design of ultra-short polarization convertor with enhanced birefringence by photonic crystals. Results in Physics, 2021. 24: p. 104138.
    6. Liu, L.-Y., et al., Design of Reflective Polarization Rotator in Silicon Waveguide. 2022. 12(20): p. 3694.
    7. Karki, D., et al., Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. Journal of Applied Physics, 2017. 121(23).
    8. Deng, C., et al., Broadband Polarization Splitter-Rotator on Lithium Niobate-on-Insulator Platform. IEEE Photonics Technology Letters, 2023. 35(1): p. 7-10.
    9. Wang, Z. and D. Dai, Ultrasmall Si-nanowire-based polarization rotator. Journal of the Optical Society of America B, 2008. 25(5): p. 747-753.
    10. Huan, Z., et al., Realization of a compact and single-mode optical passive polarization converter. IEEE Photonics Technology Letters, 2000. 12(3): p. 317-319.
    11. Chen, G., et al., Ultra-short Silicon-On-Insulator (SOI) polarization rotator between a slot and a strip waveguide based on a nonlinear raised cosine flat-tip taper. Optics Express, 2013. 21(12): p. 14888-14894.
    12. Zhou, H., et al., Ultra-compact and broadband Si photonics polarization rotator by self-alignment process. Optics Express, 2015. 23(5): p. 6815-6821.
    13. Weis, R.S. and T.K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A, 1985. 37(4): p. 191-203.
    14. Chen, Z., et al., Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform. Photonics Research, 2021. 9(12): p. 2319-2324.
    15. Luo, H., et al., High-Performance Polarization Splitter-Rotator Based on Lithium Niobate-on-Insulator Platform. IEEE Photonics Technology Letters, 2021. 33(24): p. 1423-1426.
    16. Andrushchak, A.S., et al., Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals. Journal of Applied Physics, 2010. 108(10).
    17. Kane, Y., Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966. 14(3): p. 302-307.
    18. Finite-Difference Time-Domain Method, in Introduction to Optical Waveguide Analysis. 2001. p. 233-249.
    19. Chen, W.-K., The electrical engineering handbook. 2005, Boston: Elsevier Academic Press.
    20. Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994. 114(2): p. 185-200.
    21. Hsiao, F.L., et al., Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals. Nanomaterials (Basel), 2022. 12(14).
    22. Okamoto, K., Chapter 3 - Optical fibers, in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto, Editor. 2006, Academic Press: Burlington. p. 57-158.
    23. Okamoto, K., Chapter 4 - Coupled mode theory, in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto, Editor. 2006, Academic Press: Burlington. p. 159-207.
    24. Yariv, A., Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 1973. 9(9): p. 919-933.
    25. Huang, W.P. and C.L. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE Journal of Quantum Electronics, 1993. 29(10): p. 2639-2649.
    26. Yariv, A. and P. Yeh, Optical waves in crystals : propagation and control of laser radiation. Wiley classics library ed ed. Wiley classics library. 2003, Hoboken, NJ: Wiley.
    27. Alferness, R.C. and T. Tamir, Guided-wave optoelectronics / Theodor Tamir (ed.) ; with contributions by R.C. Alferness ... [et al.]. 2nd ed ed. Springer series in electronics and photonics ; v. 26. 1990, Berlin ;: Springer-Verlag.

    QR CODE
    :::