跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林峻葳
Jiunn-Uei Lin
論文名稱: 板金雷射成形之有限元素分析
Thermal-mechanical analysis on the laser forming process of sheet metals
指導教授: 葉維磬
Wei-Ching Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 96
中文關鍵詞: 成形角度雷射成形
外文關鍵詞: bending angle, laser-forming
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文應用MARC有限元素軟體分析雷射加工板材成形問題。為了解MARC應用於雷射成形問題的可靠性及妥適性,本文首先利用雷射加工板材成形的實驗驗證有限元素解的準確性,並分別探討加工製程中雷射功率、雷射光徑、板材厚度及掃描速度,在雷射加工成形為溫度梯度機制(Temperature gradient mechanism)下對成形角度的影響,進而提出成形角度之經驗公式與預測方法。


    Abstract
    The laser-forming process is a new flexible forming process without rigid tools and external force. The laser beam is assumed to be Gaussian mode and the coupled thermo-elastoplastic problem is treated as three-dimensional. The deformation pattern of specimens have been calculated numerically and the transient response of the bending angle has been validated by experiments. The relationship between the bending angle and laser-forming parameters, such as laser power, spot size, thickness, and scan speed are studied in detail by FEM simulation. The research proposed formulate to calculate the bending angle successively.

    目錄 頁碼 摘要 Ι 目錄 Π 圖表說明 Ⅴ 第一章 緒論 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機與目的 6 第二章 基本理論 2-1 有限元素分析基本概念 9 2-2 Update Lagrangian Formulation(ULF)介紹 12 2-3 材料性質定義 12 2-4 熱傳理論 2-4-1 基本條件假設 13 2-4-2 熱傳平衡方程式 13 2-5 力學理論 2-5-1 基本條件假設 16 2-5-2 應力應變增量式 17 2-6 結構熱傳耦合分析模式 2-6-1熱-力學耦合控制方程 21 第三章 MARC有限元素軟體介紹 3-1 MARC之架構與各部分功能的介紹 24 3-2 MARC應用於雷射成形的設定與操作程序 26 3-2-1 前處理器 26 3-2-2 分析器 27 3-2-3 後處理器 28 3-3 MARC分析求解技術定義 28 3-3-1參考座標系統 29 3-3-2求解非線性代數方程式的方法 29 3-3-3收斂性判斷依據(Convergence Testing) 31 3-3-4元素技巧 32 第四章 結果與討論 4-1 MARC分析結果之驗證 4-1-1 熱變形問題 35 4-1-2 熱機耦合問題 36 4-1-3 實驗驗證 38 4-2 板材雷射加工成形之分析 39 4-2-1 雷射功率對於成形角度的影響 42 4-2-2 雷射光徑對成形角度的影響 43 4-2-4 掃描速度對於成形角度的影響 44 4-2-5 成形角度之經驗公式 44 第五章 結論與建議 5-1 結論 46 5-2 建議 47 參考文獻 48 附錄一 91 附錄二 93

    參考文獻
    [1] R.W McCarthby, Thermo-mechanism forming of steel plates using laser line heat, PhD thsis, Massachusetts Institude of Technology, 1985.
    [2] Y.Namba, Laser forming of metal and alloys, Proceeding of LAMP Osaka, pp.601-606, 1987.
    [3] K.Scully, Laser line heating, J.Ship Prod.3, Vol.4, pp.237-246, 1987.
    [4] M.Geiger, F.Vollertsen and G.Deinzer, Flexible straightening of car body shells by laser forming, Sheet Metal and Stamping Symposium SAE Special Publication, Vol.944, Warrendale, PA, pp.37-44, 1993.
    [5] M.Geiger, H.Arnet and F.Vollertsen, Laser forming, Manufacturing Systems, NO.24, Vol.1, pp.43-47, 1995.
    [6] J.Zhong, L.Qingbin, W.Shichun, J.Northwestern Polytechnical Univ.14, Vol.4, pp.645-646, 1996.
    [7] C.L.Yau, K.C.Chan and W.B.Lee, Laser bending of lead frame materials, Journal of Materials Processing Technology, Vol.82, pp.117-121, 1998.
    [8] F.Vollertsen and M.Geiger, The mechanisms of laser forming, Annals of the CIRP, Vol.42, pp.301-304, 1993.
    [9] F.Vollertsen, M.Geiger and W.M.Li, FDM and FEM simulation of laser forming:a comparative study, Advance Technology of Plasticity, Proceedings of the forth International Conference on Technology of Plasticity, Beijing, P.R.China, pp.1793-1798, 1993.
    [10] F.vollertsen, An analytical model for laser bending, Lasers in Engineering, Vol.2, pp.261-276, 1994.
    [11] H.Arnet, F.Vollertsen, Extending laser bending for the generation of convex shapes, Proceedings of the Institution Engineering, J.Eng.Manuf.B, Vol.209, pp.433-442, 1995.
    [12] F.Vollertsen, I.Komel and R.Kals, The laser bending of steel foils for microparts by the buckling mechanism-a model, Modeling Simulation Material Science, pp.107-119, 1995.
    [13] Th.B.Kermanidis, An.K.Kyrsanidi, Sp.G.Pantelakis, Numerical simulation of the laser forming process in metallic sheet metals, Proceedings of the International Conference on Computer Methods and Experimental Measurements for surface Treatment Effects, 002779, pp.307-316, 1997.
    [14] Zhong Ji, Shichun Wu, FEM simulation of the temperature field during the laser forming of sheet metal, Journal of Materials Processing, Vol.74, pp.89-95, 1998.
    [15] P.J.Cheng, S.C.Lin, An analyticial model for the temperature field in the laser forming of sheet metal, Journal of Materials Processing Technology, Vol.101, pp.260-267, 2000.
    [16] P.J.Cheng, S.C.Lin, An analyticial model to estimate angle formed by laser, Journal of Materials Processing angle formed by laser, Journal of Materials Processing Technology, Vol.108, pp.314-319, 2000.
    [17] Thomas Hennige, Develpoment of irradiation strategies for 3D-laser forming, Journal of Materials Processing Technology, Vol.103, pp.102-108, 2000.
    [18] J.Lawrence, M.J.Schmidt and L.Li, The forming of mild steel plates with 2.5KW high power diode laser, International Journal Machine & Manufacture, Vol.41, pp.967-977, 2001.
    [19] Li.Wenchuan, Y.Lawrence.Yao, Numerical and Experimental Investigation of Convex Laser Forming Process, Journal of Manufacturing Process, Vol.3/NO.2, 2001.
    [20] Wu.Shichun, Ji.Zhong, FEM simulation of the deformation field during the laser of sheet metal, Journal of Materials Processing Technology, Vol.121, pp.269-272, 2002.
    [21] N.Hao, L.Li, Finite element analysis of laser tube bending process, Applied Surface Science, Vol.208-209,pp.437-441, 2003.
    [22] Hsieh-Shen Hsieh, Jehnming Lin, Thermal-mechanical analysis on the transient deformation during plused laser forming, Journal of Machine Tools & Machine Tools & Manufacture, Vol.44, pp.191-199, 2004.
    [23] Guan Yanjin, Sun Sheng, Zhao Guoqun, Luan Yiguo, Influence of materials properties on the laser-forming process of sheet metals, Journal of Materials Processing Technology, Vol.167, pp.124-131, 2005.
    [24] G.Chen, X.Xu, C.C.Poon and A.C.Tam, Experimental and Numerical Studies on Microscale Bending of Stainless Steel with Pulsed Laser, Transaction of the ASME, Vol.66, pp.772-779, 1999.
    [25] W.F.Chen, D.J.Ham, Plasticity for Structural Engineers, Springer-Verlag New York, 1998.
    [26] 吳立仁, 鋼板熱彎成形模擬分析研究, 國立成功大學, pp.18-20, 2002.
    [27] H.D.Hibbit, P.V.Marcal and J.R. Rice, A Finite Element Formulation for Problems of Large Strain and Large displacement, Int.J.Solids struct, Vol.6, pp.1069-1086, 1970.
    [28] R.M.Mcmeeking and J.R.Rice, Finite Element Formulation for Problems of Large Elastic-Plastic Deformation, International Journal of Materials Sciences, Vol.11, pp.601-616, 1975.
    [29] Y.Ueda, K.Iida, M.Saito and A.Okamoto, Finite element model and residual stress calculation for multi-pass welded joint between a sheet metal and the penetrating pipe, Modeling of Casting, Welding and Advanced Solidification Processes-V, pp.219-227, 1991.
    [30] F.P.Incropera, D.P.de Witt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 1996.
    [31] Theory and user information, MARC Analysis is Research Corporation, Volume A. Version K7.
    [32] A.C.Ugural, Stresses in Plates and Shells, McGraw-Hill Book Company, pp.192-193, 1981.
    [33] 江卓培, 新式多光源之研發與固化收縮變形之分析, pp.73-76, 2004.
    [34] IMSL MATH/LIBRARY, User’s Manual, Fortran Subroutines for Mathmatical Allpications, IMSL, Inc., Ver2.0, pp.1030-1035, April, 1992.

    QR CODE
    :::