| 研究生: |
許伯任 Po-Jen Hsu |
|---|---|
| 論文名稱: |
金屬與合金分子叢集的結構 Structures of metallic and bimetallic clusters |
| 指導教授: |
賴山強
San-Kiong Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 基因演算法 、鉀 、銣 、銫 、金 、銅 、基因演算子 、鈉 、鉛 、分子叢集 |
| 外文關鍵詞: | Pb, algorithm, Cs, Na, alloy, Au, Cu, cluster, K, Rb, genetic, optimization |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們應用平行電腦(PC-Cluster with MPI)以及各式最佳化演算法來計算分子叢集的結構,當分子叢集的數量在上百顆以上時,其已漸漸逼進奈米尺度,這些研究資料,為奈米實驗提供了許多初步的理論基礎,我們亦在此課題中驗證平行化計算的實用行,我們所發展出來的演算法均可以利用多顆CPU來分擔運算,使得計算效能突飛猛進,目前我們的計算已經可以進展至100顆以上,並且亦驗證其他領域的實用性,如蛋白質折疊與基礎態結構等,在本篇論文中,我們首先呈現兩個經典的最佳化演算法,隨後並介紹我們新發展的演算法,在數值計算方面,我們提供一系列初步的系統化結構分析,大小均在56顆以內,總共6個材料,分別是鹼金屬Na,K,Rb,Cs,以及四價金屬Pb,最後我們再以總數38金銅合金,並套用新發展之演算法作為結束
We present detailed numerical results on the ground state structures of metallic clusters and alloy clusters. The Gupta-like many-body potential is used to account for the interactions between atoms in the cluster. Both the genetic algorithm technique and the basin hopping method have been applied to search for the global energy minima of clusters. The good agreement found in both schemes for the global energy minima gives credence to the optimized energy values obtained. Our calculations for the ground state energies of alkali metallic clusters show regularities in the energy differences, and the cluster growth pattern manifested by this same group of clusters is generally icosahedral which is quite different from the close-packed and decahedral preferentially exhibited by the tetravalent lead clusters. Considering the inherent disparities in the electronic structures and the bulk structures in these metals (body-centered cubic for alkali metals and face-centered cubic for the lead metal), it is not unreasonable to say that the valence electrons do play a subtle role in the conformation of metallic clusters.And last,we introduce a new minimization method which contains all the advantages of the above algorithms,to examine the nanoalloy cluster,Cu-Au for total number N=38.To check all the permutation and the structure variation.In evidence,there exists the most stablize structure in an alloy with total number N=38.Our algorithm also shows the reliability to compete Basin-Hopping and Genetic Algorithm.
N.W. Ashcroft and D. Stroud, in Solid State Physics, edited by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York, 1978), Vol.33, p.1.
D.H. Li, X.R. Li, and S. Wang, J. Phys. F 16, 309 (1986).
C.L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991).
O.D. Haberlen , S.C. Chung, M. Stener and N. Rosch, J. Phys. Chem. B 106, 5189 (1997).
C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.W. Stephens and R.L. Whetten, Phys. Rev. Lett. 79, 1873 (1997).
F. Calvo and F. Spiegelmann, J. Chem. Phys. 112, 2888 (2000).
N. Ju and A. Bulgac, Phys. Rev. B 48, 2721 (1993).
R.S. Berry and B.M. Smirnov, J. Chem. Phys.113, 728 (2000).
J.P.K. Doye and D.J. Wales, J. Phys. B: At. Mol. Opt. Phys.29, 4859 (1996).
J.P.K. Doye and F. Calvo, J. Chem. Phys.116, 8307 (2002).
T.P. Martin, T. Bergmann, H. Gohlich, and T. Lange, Chem. Phys. Lett.172, 209 (1990).
H. Hubert, B. Devouard, L.A. J. Garvie, M.O''Keeffe, P.R. Buseck, W.T. Petuskey, and P.F. McMillan, Nature (London) 391, 376 (1998).
Y. Zeiri, Phys. Rev. E 51, R2769 (1995).
J.A. Niesse and H.R. Mayne, J. Chem. Phys.105, 4700 (1996).
J.P.K. Doye and D.J. Wales, New J. Chem.22, 733 (1998).
R.P. Gupta, Phys. Rev. B 23, 6265 (1981).
F. Ducastelle, J. Phys. (Paris) 31, 1055 (1970).
J. Friedel, in Electrons, Vol. I of Physics of Metals edited by J.M. Ziman (Pergamon, London, 1969).
F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).
Y. Li, E. Blaisten-Barojas and D.A. Papaconstantopoulos, Phys. Rev. B 57, 15519 (1998).
The interested readers may consult the early work of Cleri and Rosato and a more recent one of Chien et al. (C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys.112, 2301 (2001)) for details.
C.D. Gelatt, Jr.H. Ehrenreich and R.E. Watson, Phys. Rev. B 15, 1613 (1977).
W.Y. Ching and J. Callaway, Phys. Rev. B 11, 1324 (1975).
G. Allan and M. Lanoo, Phys. Status Solidi B 74, 409 (1976).
N.A. Besley, R.L. Johnson, A. J. Stace, and J. Uppenbrink, J. Mol. Phys. Structure (Theochem) 34, 75 (1995).
D. Liu and J. Nocedal, Math. Program. B 45, 503 (1989).
Y. Zeiri, Chem. Phys. Lett. 261, 576 (1996).
Y. Zeiri, Computer Phys. Comm. 103, 28 (1997).
D.J. Wales and J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997).
Z. Li and H.A. Scheraga, Proc. Natl. Aca. Sci. USA 84, 6611 (1987).
W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou and M.L. Cohen, Phys. Rev. Lett. 52, 2141 (1984).
A. Aguado, J.M. Lopez, J.A. Alonso and M.J. Stott, J. Chem. Phys. 111, 6026 (1999).
U. Rothlisberger and W. Andreoni, J. Chem. Phys. 94, 8129 (1991).
V. Bonacic-Koutecky, P. Fantucci and J. Koutecky, Phys. Rev. B 37, 4369 (1988).
F. Spiegelmann and D. Pavolini, J. Chem. Phys. 89, 4954 (1988).
F.C. Frank and J.S. Kasper, Acta Crystallogr. 11, 184 (1958); ibid 12, 483 (1959).
J.P.K. Doye and D.J. Wales, J. Chem. Soc., Faraday Trans. 93, 4233 (1997).
H.S. Lim, C.K. Ong and F. Ercolessi, Surf. Sci. 269/270, 1109 (1992).
C.H. Chien, E. Blaisten-Barojas, and M.R. Pederson, J. Chem. Phys. 112, 2301 (2001).
S. Darby, T.V. Mortimer-Jones, R.L. Johnston and C. Roberts, J. Chem. Phys. 116, 1536 (2002).
J.E. Heam and R.L. Johnston, J. Chem. Phys. 107, 4674 (1997).
J.A. Northby, J. Chem. Phys. 87, 6166 (1987).
Y.H. Luo, J. Zhao and S. Qiu and G. Wang, Phys. Rev. B 59, 14903 (1999).
F. Yonezawa, S. Nose and S. Sakamoto, Z. Phys. Chem. 156, 77 (1988).
We exclude the network glassy materials such as the Si or Ge where directional terms in the many-body potential must be explicitly included. This kind of clusters therefore differs from the class of clusters mentioned here.