| 研究生: |
梁嘉仁 Jia-Ren Liang |
|---|---|
| 論文名稱: |
應用fT倍頻電路與被動結合器技術於低功率消耗毫米波混頻器之研究 The Study on fT-Doubler and Passive Combiner Techniques for Low Power Millimeter-Wave Mixer Designs |
| 指導教授: |
邱煥凱
Hwann-Kaeo Chiou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 被動結合器 、低功率消耗 、fT倍頻電路 、毫米波混頻器 |
| 外文關鍵詞: | Low Power, Millimeter-Wave Mixer, fT-Doubler, Passive Combiner |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要設計混頻器電路,論文主題分為兩大部分,第一部分使用tsmcTM CMOS 90 nm製程,設計“60 GHz低功耗雙平衡閘極驅動混頻器利用被動結合器技術”,電路架構主要利用被動結合器並使用基底耦合,將射頻與本振訊號相加,並輸入至CMOS電晶體閘極,利用電晶體平方律原理達到混頻,且利用雙平衡架構提升各埠隔離度。量測時本振功率1 dBm時,可得到轉換增益為3.4 dB,輸入功率1-dB壓縮點為-5 dBm,輸入三階交互調變失真點為6 dBm,本地振盪源至射頻與中頻隔離度皆大於33 dB,射頻至中頻隔離度大於27 dB,核心電路功率消耗只需0.9 mW,電路面積0.63 mm2。
第二部分為fT倍頻電路應用於毫米波混頻器,利用fT倍頻電路設計三顆毫米波混頻器。fT倍頻電路即為傳統達靈頓對電路,電路特性即提升fT值,與單顆CMOS電晶體比較可提升近2倍fT值,使受製程限制CMOS電晶體可提升操作頻率,提供足夠電流增益於毫米波頻段。
第二部分第一顆電路使用tsmcTM CMOS 0.18 ?m製程,設計“28GHz雙平衡低功耗高增益fT倍頻混頻器”,電路架構利用fT倍頻電路作為轉導級,提升Ka頻段轉換增益,且使用PMOS製作雙平衡吉爾伯特開關級串接轉導級可減少VDD跨壓,降低功率消耗。量測時本振功率-1 dBm時,可得到轉換增益為8.1 dB,輸入功率1-dB壓縮點為-6 dBm,三階交互調變失真點為7 dBm,本地振盪源至射頻與中頻隔離度大於23 dB與44 dB,射頻至中頻隔離度大於33 dB,核心電路功率消耗只需4.95 mW,電路面積0.7 mm2。
第二部分第二顆電路使用WIN pHEMT 0.15 ?m製程,設計“60 GHz fT倍頻單平衡混頻器使用集總式威爾金森功率結合器” ,電路架構首先設計威爾金森功率結合器等效模型,利用集總原件完成,相較於傳統使用1/4波長傳輸線威爾金森功率結合器可減少面積。使用集總式威爾金森功率結合器將射頻與本振訊號相加由閘極輸入至fT倍頻電路混頻,利用fT倍頻電路提高V頻段轉換增益,且使用單平衡架構提高各埠隔離度。量測時本振功率1 dBm時,可得到轉換增益為2.2 dB,輸入功率1 dB壓縮點為-6 dBm,三階交互調變失真點為4 dBm,本地振盪源至射頻與中頻隔離度大於13 dB與32 dB,射頻至中頻隔離度大於44 dB,核心電路功率消耗155 mW,電路面積1.5 mm2。
第二部分第三顆電路使用UMCTM CMOS 90 nm製程,設計“50 GHz低功耗fT倍頻雙平衡閘極驅動混頻器利用被動結合器技術”,電路架構使用與第一部分相同被動結合器,將射頻與本振訊號相加由閘極輸入至fT倍頻電路混頻。此電路使用四組fT倍頻電路完成雙平衡電路架構,除了提高各埠隔離度以外,更可以利用fT倍頻電路提高V頻段轉換增益。量測時本振功率-2 dBm,可得到轉換增益為-0.76 dB,輸入功率1 dB壓縮點為-7 dBm,三階交互調變失真點為0 dBm,本地振盪源至射頻與中頻隔離度大於29 dB與35 dB,射頻至中頻隔離度大於27 dB,核心電路功率消耗只需2.8 mW,電路面積0.54 mm2。
This thesis develops millimeter mixer circuits. Two kinds of mixers are studied. First, a 60 GHz low power double-balanced gate-pumped (DGP) mixer with passive combiner techniques is designed in tsmcTM CMOS 90 nm process. Using the power combiner and body coupling techniques, the proposed DGP mixer achieves a conversion gain of 3.4 dB, an input 1-dB compression point of - 5 dBm, an input IP3 of 6 dBm at 1-dBm LO power. The LO-RF and LO-IF, and RF-IF isolations are better than 33 dB, 33 dB and 27 dB. The core power consumption is only 0.9 mW and the chip size occupies 0.63 mm2.
Second. a fT-doubler topology is adopted to three mm-wave mixer designs. The fT-doubler topology is also called as Darlington pair which improves the fT frequency. Compared with a single CMOS transistor, the fT frequency can arise approximately twice times. Thus, the topology also increases the operating frequency and provides sufficient current gain in millimeter frequencies.
The first fT-doubler mixer is a 28 GHz low power high gain double-balanced mixer fabricated in tsmcTM CMOS 0.18 um process. To use the PMOS transistor for the mixer circuit design can reduce the overdrive voltage of the LO switches and the total power consumption. The proposed mixer achieves a conversion gain of 8.1 dB, an input 1-dB compression point of - 6 dBm, an input IP3 of 7 dBm at – 1-dBm LO power. The LO-RF, LO-IF, and RF-IF isolations are better than 23 dB, 44 dB and 33 dB. The core power consumption is only 4.95 mW and the chip size occupies 0.7 mm2.
The second fT-doubler mixer is a 60 GHz double-balanced mixer with lumped Wilkinson power combiner fabricated in WINTM pHEMT 0.15 um process. The passive combiner is realized by lumped Wilkinson power combiner which combines the RF with LO signals. Compared with the conventional Wilkinson power combiner, the proposed structure has significant size reduction. Besides, the combined signals are injection into each gate terminal of two coupled fT-doubler topologies to yield the frequency conversion. The fT-doubler topology acts as the transconductance stage of the mixer which not only increases the conversion gain but also improves the port-to-port isolations. The proposed mixer shows a conversion gain of 2.2 dB, an input 1-dB compression point of - 6 dBm, an input IP3 of 4 dBm at 1-dBm LO power. The LO-RF, LO-IF, and RF-IF isolations are better than 13 dB, 32 dB and 44 dB. The core power consumption is 155 mW and the chip size occupies 1.5 mm2.
Finally, the third fT-doubler mixer is a 50 GHz low power double-balanced gate-pumped mixer with passive combiner techniques fabricated in UMCTM CMOS 90 nm process. The circuit topology is same as the first one. The input RF and LO signals can be combined by using the passive combiner techniques. Then, the combined signals are injection into each gate terminal of two coupled fT-doubler of the double-balanced mixer to perform the frequency conversion. The proposed mixer obtains a conversion gain of 0 dB, an input 1-dB compression point of - 6 dBm, an input IP3 of 4.3 dBm at 0-dBm LO power. The LO-RF, LO-IF, and RF-IF isolations are better than 29 dB, 35 dB and 27 dB. The core power consumption is only 2.8 mW and the chip size occupies 0.54 mm2.
[1] C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 ?m CMOS technology,” IEEE Microwave and Wireless Conponents Letters, vol. 19, no. 8, August 2009.
[2] C.-H. Lien, C.-H. Wang, C.-S. Lin, P.-S. Wu, K.-Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, August 2009.
[3] T. Jeng-Han, Y. Hong-Yuan, H. Tian-Wei, and W. Huei, “A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 18, pp. 554-556, 2008.
[4] H.-Y. Yang, J.-H. Tsai, C.-H. Wang, C.-S. Lin, W.-H. Lin, K.-Y. Lin, T.-W. Huang, and H. Wang, “Design and analysis of a 0.8–77.5-GHz ultra-broadband distributed drain mixer using 0.13-?m CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 3, March 2009.
[5] H.-K. Chiou ,and T.-Y. Yang,“Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-?m CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 4, April 2008.
[6] F. R. Shahroury, and C.-Y. Wu,“The design of low LO-power 60-GHz CMOS quadrature-balanced self-switching current-mode mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, No. 10, October 2008.
[7] F. Zhang, E. Skafidas, and W. Shieh,“A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS,” IEEE Radio Frequency Integrated Circuits Symposium Letters, vol. 18, no. 10, October 2008.
[8] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, John G. J. Chern, and W.-C. Huang“A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology”, IEEE Microwave And Wireless Components Letters, vol. 17, no. 4, April 2007.
[9] C. H. Lai, Y. Kambayashi, and M. Fujishima,“60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” IEEE ASSCC, pp. 195-198, 2006.
[10] JBahar M. Motlagh, Sten E. Gunnarsson, Mattias Ferndahl, and Herbert Zirath,“Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology”, IEEE Microwave and Wireless Components Letters, vol. 16, no. 1, January 2006.
[11] C.-H. Lien, P.-C. Huang, K.-Y. Kao, K.-Y. Lin, and H. Wang ,“60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS processes,” Microwave and Wireless Components Letters, IEEE , vol.20, no.3, pp.160-162, March 2010
[12] C.-H. Lien, C.-H. Wang, C.-S. Lin, P.-S. Wu, K.-Y. Lin, and H. Wang ,“Analysis and design of reduced-size Marchand rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process,” Microwave Theory and Techniques, IEEE Transactions on , vol.57, no.8, pp.1966-1977, Aug. 2009
[13] T. H. Lee, The design of CMOS radio-frequency integrated circuit. Cambridge university press, 1998.
[14] I. H. Kang, and J. S. Park,“A reduced-size divider using the coupled line
equivalent to a lumped inductor,” Microwave Journal, 46, 7, ABI/INFORM
Trade & Industry, pp. 72, July 2003
[15] J.-A. Hou, and Y.-H. Wan ,“A Ka Band Balanced Third LO-Harmonic Mixer Using a Lumped-Elements Quadrature Hybrid,” Microwave and Wireless Components Letters, IEEE , vol.18, no.6, pp.404-406, June 2008
[16] J.-Y. Sum, S.-C. Tseng, C. Meng, P.-Y. Wu, Y.-T. Lee, and G.-W. Huang,“Ka/Ku -Band pHEMT Gilbert Mixers With Polyphase and Coupled-Line Quadrature Generators,” Microwave Theory and Techniques, IEEE Transactions on , vol.57, no.5, pp.1063-1073, May 2009
[17] Singh P.K., Basu S., K.-H. Liao, and Y.-H. Wang,“Highly Integrated Ka-Band Sub-Harmonic Image-Reject Down-Converter MMIC,” Microwave and Wireless Components Letters, IEEE , vol.19, no.5, pp.305-307, May 2009
[18] N.-D. Tsai, and H. Wang,“A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-μm CMOS technology,” Microwave and Wireless Components Letters, IEEE , vol.14, no.11, pp. 522- 524, Nov. 2004
[19] D. An, S. C. Kim, W. S. Sul, H. J. Han, H. S. Lee, W. Y. Uhm, H. M. Park, S. D. Kim, D. H. Shin, and J. K. Rhee,“High conversion gain V-band quadruple subharmonic mixer using cascode structure,” Microwave Symposium Digest, 2003 IEEE MTT-S International , vol.2, no., pp. 911- 914 vol.2, 8-13 June 2003
[20] An, Dan, Lee, Bok Hyung; Chae, Yeon Sik; Park, Hyung Moo; Park, Hyun Chang; and Rhee, Jin Koo; ,“Low LO Power V-band CPW Mixer Using GaAs PHEMT,” Microwave Conference, 2002. 32nd European , vol., no., pp.1-4, 23-26 Sept. 2002
[21] Deguchi J., Miyashita D., and Hamada M.,“A 0.6V 380µW −14dBm LO-input 2.4GHz double-balanced current-reusing single-gate CMOS mixer with cyclic passive combiner,” Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International , vol., no., pp.224-225,225a, 8-12 Feb. 2009
[22] C.-H. Lien, P.-C. Huang, K.-Y. Kao, K.-Y. Lin, and H. Wang; ,“60 GHz Double-Balanced Gate-Pumped Down-Conversion Mixers With a Combined Hybrid on 130 nm CMOS Processes,” Microwave and Wireless Components Letters, IEEE , vol.20, no.3, pp.160-162, March 2010
[23] P.-Z. Rao, T.-Y. Chang, C.-P. Liang, and S.-J. Chung,“An Ultra-Wideband High-Linearity CMOS Mixer With New Wideband Active Baluns,” Microwave Theory and Techniques, IEEE Transactions on , vol.57, no.9, pp.2184-2192, Sept. 2009
[24] Ho, S.S.K.; and Saavedra, C.E. ,“A CMOS Broadband Low-Noise Mixer With Noise Cancellation,” Microwave Theory and Techniques, IEEE Transactions on , vol.58, no.5, pp.1126-1132, May 2010
[25] Ryan L. Bunch, David I. Sanderson, and Sanjay Raman; ,“Quality Factor and Inductance in Differential IC Implementations,”
[26] J.-H. Tsai, and T.-W. Huang,“35–65-GHz CMOS Broadband Modulator and Demodulator With Sub-Harmonic Pumping for MMW Wireless Gigabit Applications,”Microwave Theory and Techniques, IEEE Transactions on , vol.55, no.10, pp.2075-2085, Oct. 2007
[27] Masuda T.; Shiramizu, N.; Nakamura, T.; and Washio, K.; ,“Characterization and Modeling of Microstrip Transmission Lines with Slow-Wave Effect,”Silicon Monolithic Integrated Circuits in RF Systems, 2008. SiRF 2008. IEEE Topical Meeting on , vol., no., pp.155-158, 23-25 Jan. 2008
[28] Gang Liu; Schleicher, B.; Purtova, T.; and Schumacher, H.; ,“Fully integrated millimeter-wave VCO using slow-wave Thin-Film Microstrip Lines for chip size reduction,”Microwave Integrated Circuits Conference, 2009. EuMIC 2009. European , vol., no., pp.116-119, 28-29 Sept. 2009
[29] Cheung, T.S.D.; Long, J.R.; Vaed, K.; Volant, R.; Chinthakindi, A.; Schnabel, C.M.; Florkey, J.; and Stein, K.; ,“On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction,”Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International , vol., no., pp. 396- 501 vol.1, 2003
[30] H.-K. Chiou; and T.-Y. Yang; ,“Low-Loss and Broadband Asymmetric Broadside-Coupled Balun for Mixer Design in 0.18-?m CMOS Technology,” Microwave Theory and Techniques, IEEE Transactions on , vol.56, no.4, pp.835-848, April 2008
[31] H.-K. Chiou; W.-R. Lian; and T.-Y. Yang; ,“A Miniature Q-Band Balanced Sub-Harmonically Pumped Image Rejection Mixer,”Microwave and Wireless Components Letters, IEEE , vol.17, no.6, pp.463-465, June 2007
[32] T.-Y. Yang; W.-R. Lien; C.-C. Yang; and H.-K. Chiou; ,“A Compact V-Band Star Mixer Using Compensated Overlay Capacitors in Dual Baluns,”Microwave and Wireless Components Letters, IEEE , vol.17, no.7, pp.537-539, July 2007
[33] 陳偉強, ”Ku/K頻段壓控振盪器及注入鎖定除頻器暨毫米波fT-倍頻電路壓控振盪器與寬頻混頻器之研製,” 國立中央大學,碩士論文,2008。