跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊逸琦
Yi-chi Yang
論文名稱: 表面粗糙度對接觸角遲滯影響之效應
Effect of surface roughness on contact angle hysteresis
指導教授: 曹恆光
Heng-kwong Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 表面粗糙度接觸角遲滯溫佐理論卡西理論液體滲入
外文關鍵詞: surface roughness, contact angle hysteresis, Wenzel model, Cassie model, Liquid imbibition
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今對於基材表面粗糙度如何影響液滴接觸角遲滯的相關研究尚未清楚,本論文透過靜電紡絲與機械力研磨等方式在基材表面上提供粗糙度並且各基材上液滴接觸角遲滯是透過水滴的前進角與後退角量測所獲得的,然而粗糙基材上的潤濕性質可以透過全氟矽烷的蒸氣沉積法或者溶膠-凝膠法加以改善。隨著表面粗糙度增加時,液滴前進角會隨之上升但是對於後退角的潤濕行為可分為三種類型:(1)、隨粗糙度增加後退角隨之下降,(2)、隨粗糙度增加後退角隨之上升,(3)、隨粗糙度增加後退角存在最小值。針對此三種潤濕行為變化之合理說法可由粗糙結構中氣囊(air pocket)穩定程度獲得解釋。
    影響粗糙結構中氣囊穩定程度變化可以透過觀察鑽孔基材中液體滲入與氣泡浮出過程加以說明,在錐形單孔基材中,隨著液體潤濕性質提升與孔洞深度變淺,都使得液體滲入速率變快而氣泡越容易排至大氣中。其潤濕過程是液膜接觸線沿著孔壁變化而向下流,並在底端累積並將氣泡隨之舉起並排出。而在多孔基材上,液滴會隨著滲入程度快慢而導致接觸角量測上的變化,當液體本身滲入速率較慢時,此前進角量測時符合Cassie-Baxter理論而上升,但是液體終究會滲入於孔洞中,導致在後退角量測上因Wenzel理論而角度下降。


    The influence of surface roughness on contact angle hysteresis is not well understood. In this study, surface roughness is systematically altered on some polymeric substrates such as polystyrene, polycarbonate and poly(methyl methacrylate) by polishing or electrospinning method and its effect on contact angle hysteresis is investigated via measuring advancing and receding contact angles of water. The wettability on these substrates is also modifed by vapor-phase deposition of perfluorooctyltrichlorosilane or sol-gel reaction. As surface roughness is increased, the advancing contact angle grows but three types of the receding contact angle (θr) behavior have been identifed:(i) monotonic reduction of θr, (ii) monotonic enhancement of θr, and (iii) presence of a minimum of θr. The plausible mechanism based on the stability of air pockets is proposed to explain our experimental findings.
    The effect of stability of air ockets on rough surface can be observed by liquid imbibition into holes on a substrate. The imbibition behavior of a drop on top of a small hole is dependent on various rate of imbibition and the depth of hole. As the liquid drop favors wetting on the substrate surface or the depth of hole becomes more shallow, spontaneous and rapid imbibition into the conical hole takes place and trapped air is removed upon immediate impregnation. The possible imbibition pathway is that the three-phase contact line move downward along the wall of the hole. Once the contact line reaches the bottom, liquid starts to accumulate. The air bubble rises up slowly and eventually burst as it is in contact with the drop surface exposed to the ambient atmosphere. Liquid cannot immediately impregnate into the holes due to the relatively slow rate of imbibition. Therefore, the advancing contact angles of liquid drop on the porous substrate correspond to the Cassie-Baxter state. However, the liquid eventually invades the holes after some time and the receding contact angles are in the Wenzel state.

    目錄 摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 7 1-2-1 靜電紡絲技術 7 1-2-2 矽烷氣相沉積法 10 1-2-3 粗糙表面的潤濕行為 13 1-2-4 Cassie-Wenzel潤濕行為轉換 18 1-3 研究動機與目的 22 第二章 基本原理 23 2-1 潤濕現象的理論定義 23 2-1-1 楊氏方程式 ( Young’s equation ) 23 2-1-2 溫佐方程式 ( Wenzel’s equation ) 27 2-1-3 卡西方程式 (Cassie equation) 28 2-2 接觸角遲滯 ( Contact angle hysteresis ) 29 2-3 粗糙表面潤濕現象 33 第三章 實驗介紹 43 3-1 實驗藥品材料 43 3-2 實驗儀器原理介紹 44 3-2-1 影像式接觸角測量儀 44 3-2-2 全自動接觸角儀 45 3-2-3 光學顯微系統 45 3-2-4 巨觀放大顯微測量系統 46 3-2-5 探針式三維表面輪廓量測儀 46 3-2-6 薄膜界面動態現象量測系統-靜電紡絲 48 3-2-7 其他儀器設備 49 3-3 實驗流程 49 3-3-1 利用靜電紡絲技術製備具有粗糙程度之疏水基材 49 3-3-2 透過矽烷蒸氣沉積法於研磨基材表面進行化學改質 50 3-3-3 利用影像式接觸角儀觀察鑽孔孔穴中氣泡上升情形 50 3-3-4 利用Surface Evolver模擬液體滲入錐形單孔之情形 51 第四章 結果與討論 58 4-1 不同粗糙程度基材表面之潤濕行為探討 58 4-1-1 類型A : 後退角隨表面粗糙度增加而降低 58 4-1-2 類型B : 後退角隨表面粗糙度增加而提升 59 4-1-3 類型C : 隨表面粗糙度增加而存在最小值的後退角 61 4-2 液體滲入孔洞基材之潤濕現象探討 76 4-2-1 不同液滴滲入單孔錐形洞缺陷之觀察 76 4-2-2 液體滲入錐形單孔之模擬結果觀察 79 4-2-3 液體滲入對於液滴前進角與後退角改變之效應 81 第五章 結論 93 第六章 參考資料 95

    [1] N. Nuraje, W. S. Khan, Y. Lei, M. Ceylan R. Asmatulu,
    Superhydrophobic electrospun nanofibers, J. Mater.
    Chem. A 1, 1929–1946 (2013)
    [2] Y. Zheng, X. Gao, L. Jiang, Directional adhesion of
    superhydrophobic butterfly wings, Soft Matter 3, 178
    –182 (2007)
    [3] P. Somasundaran, Encyclopedia of Surface and Colloid
    Science, vol 8, p.6611-6612, CRC Press. , United
    States , (2006)
    [4] A. Grigoryev, I. Tokarev, K. Kornev, I. Luzinov, S.
    Minko, Super-omniphobic magnetic microtextures with
    remote wetting control, J. Am. Chem. Soc 134,
    12916−12919 (2012)
    [5] S. Ebnesajjad, A. H. Landrock, Adhesives Technology
    Handbook, 3rd Edition, Ch.2, p.19-34, William Andrew,
    NewYork, (2014)
    [6] M. Ma, R. M. Hill, Superhydrophobic surfaces, Curr Opin
    Colloid Interface Sci 11, 193–202 (2006)
    [7] M. Kang, R. Jung, H.-S. Kim, H.-J. Jin, Preparation of
    superhydrophobic polystyrene membranes by
    electrospinning, Colloids Surf A Physicochem
    Eng Asp 313–314, 411–414 (2008)
    [8] K.H. Lee, H.Y. Kim, H.J. Bang, Y.H. Jung, S.G. Lee, The
    change of bead morphology formed on electrospun
    polystyrene fibers, Polymer 44 4029–4034 (2003)
    [9] T. Lin, H. Wang, H.Wang, X. Wang, The charge effect of
    cationic surfactants on the elimination of fibre beads
    in the electrospinning of polystyrene, Nanotechnology
    15 1375–1381 (2004)
    [10] H.W Fox, W.A Zisman, The spreading of liquids on low
    energy surfaces. I. polytetrafluoroethylene, J.
    Colloid Sci 5, p.514-531 (1950)
    [11] L. Zhai, F. Cü . Cebeci, R. E. Cohen, M. F. Rubner,
    Stable Superhydrophobic Coatings from Polyelectrolyte
    Multilayers, Nano Lett., Vol. 4, No.7 (2004)
    [12] A. Tuteja, Robust omniphobic surfaces, PNAS vol. 105
    no. 47 18200–18205 (2008)
    [13] A. Ulman, Formation and Structure of Self-Assembled
    Monolayers, Chem. Rev. 96, 1533-1554 (1996)
    [14] M. Wang, K. M. Liechti, Q. Wang, J. M. White, Self-
    Assembled Silane Monolayers: Fabrication with
    Nanoscale Uniformity, Langmuir 21,1848-1857, (2005)
    [15] M. Adamkiewicz, T. O'Hara, D. O'Hagan, G. Hähner, A
    vapor phase deposition of self-assembled monolayers:
    Vinyl-terminated films of volatile silanes on silicon
    oxide substrates, Thin Solid Films 520 6719–6723,(2012)
    [16] S. Rezaei, I. Manoucheri, R. Moradian, B. Pourabbas,
    One-step chemical vapor deposition and modification of
    silica nanoparticles at the lowest possible
    temperature and superhydrophobic surface fabrication,
    Chem Eng J 252 ,11–16 , (2014)
    [17] R. D. Lowe, M. A. Pellow, T. Daniel, P. Stack, C. E.
    D. Chidsey, deposition of Dense Siloxane Monolayers
    from Water and Trimethoxyorganosilane Vapor, Langmuir
    27, 9928–9935, (2011)
    [18] L.Feng, L.Jiang, Petal Effect: A Superhydrophobic
    State with High Adhe-sive Force, Langmuir 24, 4114-
    4119, (2008)
    [19] A. W. Adamson, Physical Chemistry of Surfaces, Ch.10,
    5th edn, Wiley,New York, (1990)
    [20] R.E. Johnson, R.H. Dettre, Contact angle, wettability
    and adhesion, Adv.Chem. Ser. 43, 112–135, (1964)
    [21] A. Hennig, K. Grundke, R. Frenzel, M. Stamm,
    Ultrahydrophobic surfaces: Relation between roughness
    and contact angle hysteresis, Surf Det 39, 243-246,
    (2002)
    [22] K. Grundke, M. Nitschke, S. Minko, M. Stamm, C.Froeck,
    F, Simon, S.Uhlmann, K. Pöschel, M. Motornov, In:
    Mittal KL, (Ed) Contact angle,wettability and
    adhesion, vol. 3.VSP; p. 267.-p.291, (2003)
    [23] K. Grundke, K. Pöschel, A. Synytska, R. Frenzel, A.
    Drechsler, M. Nitschke , A.L. Cordeiro, P. Uhlmann ,
    P.B.Welzel, Experimental studies of contact angle
    hysteresis phenomena on polymer surfaces — Toward
    the understanding and control of wettability for
    different applications, Adv Colloid Interface Sci, In
    Press, Corrected Proof (2014)
    [24] P. G. Pittoni, C.-H. Lin, T.-S. Yu, S.-Y. Lin, On the
    Uniqueness of the Receding Contact Angle: Effects of
    Substrate Roughness and Humidity on Evaporation of
    Water Drops, Langmuir 30, 9346−9354, (2014)
    [25] A Lafuma, D Quéré, Superhydrophobic states, Nature
    materials 2, 457-460(2003)
    [26] E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman,
    R. Pogreb,Environmental Scanning Electron Microscopy
    Study of the Fine Structure of the Triple Line and
    Cassie-Wenzel Wetting Transition for Sessile Drops
    Deposited on Rough Polymer Substrates, Langmuir 23,
    4378-4382,(2007)
    [27] D. Murakami, H. Jinnai, A. Takahara, Wetting
    Transition from the Cassie−Baxter State to the Wenzel
    State on Textured Polymer Surfaces,Langmuir 30,
    2061−2067, (2014)
    [28] A. K. Metya, S. Khan, J. K. Singh, Wetting Transition
    of the Ethanol−Water Droplet on Smooth and Textured
    Surfaces, J. Phys. Chem. C 118,4113−4121, (2014)
    [29] T. Young, An Essay on the Cohesion of Fluids. Philos.
    Trans. R. Soc. London, 95, 65-87, (1805)
    [30] N. K. ADAM, Use of the Term 'Young's Equation' for
    Contact Angles,Nature 180, 809 – 810, (1957)
    [31] R. N. Wenzel, Resistance of solid surfaces to wetting
    by water, Ind. Eng.Chem. 28, p. 988–994, (1936)
    [32] A. Cassie and S. Baxter, Wettability of porous
    surfaces, Trans. Faraday Soc.40, p.546–551, (1944)
    [33] Y. Uyama, K. ITO Inoue, A. Kishida, Yoshito. Ikada,
    Comparison of Different Methods for Contact Angle
    Measurement. J. Colloid Interface Sci. 141, 275-279
    (1991)
    [34] O. N. Tretinnikov, Y. Ikada, DynamicWetting and
    Contact Angle Hysteresis of Polymer Surface Studied
    with the Modified Wilhelmy Balance Method, Langmuir
    10, 1606-1614 (1994)
    [35] V. Berejnov, R.-E. Thorne, Effect of Transient Pinning
    on Stability of Drops Sitting on An Inclined Plane,
    Phys. Rev. E 75, 066308 (2007)
    [36] De Gennes, A model for contact angle hysteresis, J.
    Chem. Phys. 81, 552(1984).
    [37] Jacob Israelachvili, Friction and Adhesion Hysteresis
    of Fluorocarbon Surfactant Monolayer-Coated Surfaces
    Measured with the Surface Forces Apparatus, J. Phys.
    Chem. B, 1998, 102 (1), pp 234–244.
    [38] S.-J. Hong, F.-M. Chang, T.-H. Chou, S.-H. Chan, Y.-J.
    Sheng, H.-K. Tsao,Anomalous Contact Angle Hysteresis
    of a Captive Bubble: Advancing Contact Line Pinning,
    Langmuir 27, 6890–6896, (2011)
    [39] F. Garbassi, M. Morra, E. Occhiello, Polymer Surfaces
    From Physics to Technology, Ch.4, p.171-178, Wiley,
    New York, (1994)
    [40] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, Super
    Water-Repellent Surfaces Resulting from Fractal
    Structure, J. Phys. Chem. 100, 19512-19517,(1996)
    [41] D. Que ́re ́, Rough ideas on wetting, Physica A 313, 32
    – 46, (2002)
    [42] J. Bico, U. Thiele, D. Que ́re ́, Wetting of textured
    surfaces, Colloid surface A.206, 41–46, (2002)
    [43] G. Fang, A. Amirfazli, Understanding the Edge Effect
    in Wetting:A Thermodynamic Approach, Langmuir 28,
    9421−9430, (2012)

    QR CODE
    :::