跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林正國
Cheng-Kuo Lin
論文名稱: 深次微米變晶式高電子移導率電晶體特性研究及其在單晶微波積體電路上之應用
Investigation of Deep Submicron Metamorphic HEMTs and Application on Monolithic Microwave Integrated Circuits
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 93
語文別: 英文
論文頁數: 156
中文關鍵詞: 單晶微波積體電路高電子移導率電晶體變晶式
外文關鍵詞: monolithic microwave integrated circuits, HEMTs, metamorphic
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高速電子移導率電晶體設計概念在1978年被提出,而進一步在1980年利用砷化鋁鎵/砷化鎵(AlGaAs/GaAs) 化合物材料系統成功實現此設計概念。為了進一步提升元件特性,在1985年提出了砷化鎵基板上(GaAs substrate)虛擬式通道(pseudomorphic channel)之概念,使用銦含量最高百分之二十之砷化銦鎵(InGaAs)高電子移導率之材料,進一步提升元件傳導帶之不連續性(Conduction-band discontinuity),與元件直流與高頻之特性。另一方面在磷化銦(InP)基板上利用晶格常數與高銦含量之砷化銦鎵之材料相近之優點,成長銦含量高達百分之五十之砷化銦鎵之材料,元件高頻特性更可進一步提升。
    然而,磷化銦基板機械強度不足,使得基板面積受限於4吋基板,在量產製程上導至良率與價格上受限,因此在砷化鎵基板上成長高銦含量之砷化銦鎵為高速電子移導率電晶體發展之方向。在1989年Alain Cappy提出了在砷化鎵基板上利用變晶式(metamorphic)分子束磊晶式成長技術,成功磊晶高銦含量之砷化銦鎵之材料系統。因此在本論文中是研究在砷化鎵基板上利用變晶式(metamorphic)成長之砷化銦鋁/砷化銦鎵 (InAlAs/InGaAs) 化合物材料系統高電子移導率場效應電晶體。進一步利用磊晶的技術,與製程方法進一步提升元件直流、高頻、崩潰電壓與微波功率特性。
    在第二章中,我們與博達科技(Procomp Informatics) 合作利用分子束磊晶技術,在砷化鎵基板上成長變晶式(metamorphic)層,並結合虛擬式通道(pseudomorphic channel)磊晶技術,進一步增加元件砷化銦鋁/砷化銦鎵(InAlAs/InGaAs)傳導帶之不連續性(Conduction-band discontinuity),電子移導率(electron mobility)。在與傳統晶格常數相通之電晶體比較下元件高頻及功率特性進一步提升。
    傳統上提升場效應電晶體特性之方法,就是縮短閘極長度,提升元件高頻特性,因此在第三章,我們改變不同閘極長度在砷化銦鋁/砷化銦鎵(InAlAs/InGaAs)變晶式電晶體上,分析元件短通道效應,與元件傳輸時間之特性,並進一步萃取傳導電子在電子通道層中之飽和速度。另外一方面,我們發展完整的單晶微波積體電路之製作流程,並成功製作出全國學術界第一個次微米變晶式電晶體毫米波積體電路,其中包含了高隔離度之分佈式微波開關以及Ka頻段二級增益放大器。
    在第四章中,我們發展出利用閘極高溫滲透之製程方法,改變元件臨界電壓,使得空乏型元件成為增強型元件,並利用小訊號模型之分析方法,研究高頻特性提升之原因。另外,我們開發出只需要一次電子束微影技術,同時達成不對稱之蝕刻與Gamma Gate之閘極外型,使用元件崩潰電壓進一步提升,進一步提升微波功率特性。而在最後一章結論中,整理及歸納出前三章之實驗結果與重點。


    The development of HEMTs started in 1978, immediately after successful experiments on modulation-doped AlGaAs/GaAs heterostructures, which revealed the formation of a two-dimensional electron gas (2DEG) with enhanced electron mobility. Earlier HEMTs utilized the AlGaAs/GaAs system, which was the most widely studied and best understood heterojunction system at that time.
    In the mid 1980s, in order to further improve device characteristics, the AlGaAs/InGaAs pseudomorphic HEMTs and high indium composition of InAlAs/InGaAs on GaAs and InP substrates had been realized owing to the higher conduction band offsets considerably, and excellent electron transport characteristics. However, the AlGaAs/InGaAs pHEMT, In content is restricted to 20-25% to preserve high layer quality. Therefore, the conduction band discontinuity is limited. In addition, InP substrates are available only in small diameters, which make it hard to compete with the cost per chip of GaAs transistors fabricated on 6-inch wafers. Therefore it would be desirable to find a way to fabricate high performance transistors with high In-content channel on the less brittle and larger diameter GaAs substrates. The answer to this is the concept of fabricating metamorphic GaAs HEMTs (GaAs mHEMT).
    The primary propose of this dissertation is to enhance the InAlAs/InGaAs metamorphic buffer HEMTs performance using molecular beam epitaxial (MBE) techniques, advanced lithography technology and novel fabrication process.
    In chapter Ⅱ, we used the metamorphic In0.5Al0.5As buffer layer by inserting an pseudomorphic channel (PC) layer to improve device dc and rf performance, which is compared with the lattice matched (LM) In0.5Ga0.5As/In0.5Al0.5As mHEMTs. In recent years, millimeter wave circuit and device technologies are very attractive, which provide a broadband capacity to meet the increasing demands on the wireless mobile communication. Submicron gate-length devices are therefore required to improve the device gain, noise, and power performance. In chapter Ⅲ, in order to characterize and compare the device performance of submicron In0.5Al0.5As/In0.5Ga0.5As mHEMTs, devices with gate-lengths ranging from 0.25-μm to 0.6-μm, written by the e-beam lithography system, were fabricated. The dc, rf, and delay time analysis of these devices will be presented. In addition, we proposed fully process flows of monolithic microwave circuits, which includes high isolation distributed switch and Ka-band two-stage gain amplifier.
    In this chapter Ⅳ, we developed two device fabrication techniques to improve the InAlAs/InGaAs metamorphic HEMTs dc and rf characteristics without any device structure modification. Firstly, we realized the enhancement-mode (E-mode) InAlAs/InGaAs metamorphic HEMT’s on GaAs substrates by using the thermally annealed Schottky metal diffusion approach so as to further improve rf performance compared with pre-anneal devices.
    Secondly, we proposed a novel electron beam lithography process flow, which combine an asymmetric wide recess in conjunction with a gamma gate (AG), applying to the fabrication of InAlAs/InGaAs metamorphic HEMTs. The fabricated device using this technique demonstrates the improved off-state breakdown voltage and the reduced impact ionization as compared with the conventional T-gate process. In the final chapter, we summarize the results obtained in this thesis.

    TABLE OF CONTENTS CHINESE ABSTRACT I ABSTRACT III TABLE CAPTIONS VIII FIGURE CAPTIONS Ⅸ Chapter I Introduction I.1 Overview of GaAs and InP-based HEMT 1 I.2 Introduction of the InAlAs/InGaAs metamorphic HEMTs 4 I.3 Objectives and Scope of the Present Research 8 Chapter II Pseudomorphic Channel Layer in Metamorphic HEMTs II.1 Introduction 11 II.2 Pseudomorphic Channel In0.65Ga0.35As layer on In0.5Al0.5As metamorphic layer II.2 1 Device Structure and Fabrication 12 II.2 2 Device DC and RF Performance 15 II.2 2 Small-Signal Model Analysis 19 II.2.4 0.25-?m T-gate PC-mHEMTs Characteristics 28 II .3 Pseudomorphic Channel In0.45Ga0.55As layer on In0.3Al0.7As metamorphic layer II.3.1 Device Structure and Fabrication 32 II.3.2 Device DC and RF Performance 34 II.3.3 Device Breakdown Mechanism and RF Power Characteristics 37 II.3.3.1 The mechanism of off-state breakdown in InAlAs/InGaAs HEMTs 39 II.3.3.2 The mechanism of on-state breakdown in InAlAs/InGaAs HEMTs 39 II.3.3.3 Power Performance of LM-mHEMTs and PC-mHEMTs 44 II.3.4 Summary 47 Chapter III Characteristics of In0.5Al0.5As/In0.5Ga0.5As Metamorphic HEMTs and Application on Monolithic Microwave Integrated Circuits III.1 Introduction 50 III.2 Device Cross-Section and fabrication procedures III.2.1 Device Structure and Fabrication 51 III.2.2 Bi-layer sub-micron T-gate E-beam lithography 52 III.3 The Characteristics of the InAlAs/InGaAs metamorphic HEMTs with Variable Gate-lengths III.3.1 Device DC Characteristics 59 III.3.2 Device RF Characteristics 60 III.4 Monolithic Microwave Integrated Circuit Using 0.25-µm InAlAs/InGaAs metamorphic HEMTs 68 III.4.1 MMIC Fabrication Procedures III.4.1.1 Mesa Isolation 69 III.4.1.2 NiCr thin-film resistor 69 III.4.1.3 Ohmic contact and first metal level 70 III.4.1.4 0.25-μm T-gate Schottky contact 70 III.4.1.5 Silicon Nitride Depositions and Nitride Via 72 III.4.1.6 Second metal level 72 III.4.1.7 BCB via and bridge metal 73 III.4.2 DC-30 GHz distributed switch III.4.2.1 Introduction 77 III.4.2.2 Design Principle 77 III.4.2.3 SPST Switch Characteristics 79 III.4.3 Two-stage Ka-band gain Amplifier III.4.3.1 Introduction 82 III.4.3.1 Design Principle, Simulated and Measurement Results 82 III.5 Summary 86 Chapter IV Performance Enhancement by Fabrication Techniques in Metamorphic HEMTs IV.1 Introduction 87 IV.2 Investigation of performance enhancements by Schottky metal diffusion in InAlAs/InGaAs metamorphic HEMTs IV.2.1 Introduction 88 IV.2.2 Device cross-section and fabrication procedures 89 IV.2.3 Device results and discussions 92 IV.3 A single step e-beam lithography for asymmetric recess and gamma gate in HEMT fabrication IV.3.1 Introduction 108 IV.3.2 Analysis of electric field distribution in transistor with asymmetric recess and Gamma gate 109 IV.3.3 E-beam technology for asymmetric recess and gamma gate process 115 IV.3.4 InAlAs/InGaAs mHEMT Results and discussion 121 Chapter V Conclusions 126 REFERENCE 128 PUBLICTION LIST 138

    REFERENCE
    [1] R. Dingle, H.L. Stormer, A.C. Gossard, and W. Wiegmann, “Electron Mobilites in Modulation-Doped Semiconductor Heterojunction Super lattices”, Appl. Phys. Lett., 33, pp. 6655-678, 1978.
    [2] P.C. Chao, S.C. Palmateer, P.M. Smith, U.K. Mishra, K. H. g. duh, and J. C. M. Hwang, “Millimeter-Wave Low-noise High Electron Mobilites Transistors”, IEEE Electron Device Lett., 6, pp. 531-533, 1985.
    [3] A.W. Swanson, J. Herb, and M. Young, “First Commercial HEMT Challenges GaAs FETs”, Microwave & RF, 24, pp. 107-110, Nov, 1985.
    [4] H. Brech, Doctor thesis, “ "Optimization of GaAs Based High Electron Mobility Transistors by Numerical Simulation” Institute of Microelectons, Vienna, Austria, 1998.
    [5] J. G. Ruch, G. S. Kino, "Transport Properties of GaAs," Phys. Rev. 174, pp. 921¬931, 1968.
    [6] N. Braslau and P. S. Hauge, "Microwave Measurement of the Velocity-Field Characteristic of GaAs," IEEE Trans. Electron Devices, Vol. 17, No. 8 pp. 616¬622, 1970.
    [7] P. A. Houston and A. G. R. Evans, "Electron Drift Velocity in n-GaAs at High-Fields," Solid-State Electronics, Vol. 20, pp. 197-¬204, 1977.
    [8] M. A. Littlejohn, K. W. Kim, and H. Tian, "High-Field Transport in InGaAs and Related Heterostructures," in Properties of Lattice¬Matched and Strained Indium Gallium Arsenide, P. Bhattacharya (ed.), INSPEC, the Institution of Electrical Engineers, London, pp. 107¬-116, 1993.
    [9] F. Schwierz and J.J. Liou, Modern Microwave Transistors Theory, Design, and Performance. New York; Wiley, 2002.
    [10] A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc, and K. R.Gleason, “Characteristics of InGaAs/AlGaAs Modulation-Doped Field Effect Trnasitor”, IEEE Trans. Electron Devices, 33, pp. 564-571, 1986.
    [11] T. Heenderson. M. Aksun, C. Peng, H. Morkloc, P.C. Chao, P.M. Smith, K. H. G. Duh, and L. F. Lester, “Microwave Performance of a Quarter-Microwave gate low-noise pseudomorphic AlGaAs/InGaAs MODFET”, IEEE Electron Device Lett., 7, pp. 645-647, 1986.
    [12] K. Hirose, K. Ohata, T. Mizutani, T. Itoh, and M.Ogawa, “700 mS/mm 2DEGFETs Fabricated from High Mobility MBE-Grown n-AlInAs/InGaAs Heterostructures”, Proc. GaAs and Related Compounds, pp. 529-532, 1985.
    [13] M.T. Yang, Y.J. Chan, J.L. Shieh, and J.I. Chyi,” The performance enhancement in metamorphic InAlAs/InGaAs doped-channel FET’s on GaAs substrates”, IEEE Electron Device Lett., 17, pp. 410-412, 1996.
    [14] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron and Y. Crosnier,” InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage”, IEEE Electron. Device Lett., 19, pp. 345-347, 1998.
    [15] M. Zaknoune, Y. Cordier, S. Bollaert, D. Ferre, D. Theron and Y. Crosnier,” 0.1 µm high performance metamorphic In0.32Al0.68As/In0.33Ga0.67As HEMT on GaAs using inverse step InAlAs buffer”, Electron. Lett. 35, pp. 1670-1671, 1999
    [16] M. Schlectweg, A. Leuther, A. Tessmann, C. Schwoer ,H. Massler, W. Reinert, M. Lang, U. Nowotny, O. Kappeler, M. Walther, R. Losch, “Millmerter-wave and Mixed-Signal Integrated Circuits Based on Advanced Metamorphci HEMT Technology”, Proceeding of Indium Phosphide and Related Materials Conference, pp. 609-614, 2004.
    [17] D. W. Tu, S. Wang, J. S. M. Liu, K. C. Hwang, W. Kong, P.C. Chao, K. Nichols, “High-performance double-recessed InAlAs/InGaAs power metamorphic HEMT on GaAs substrate”, IEEE Microwave and Guided wave Lett., 9, pp. 458-460, 1999.
    [18] K. Yuan, K. Radhakrishnan, “High breakdown voltage InAlAs/InGaAs metamorphic HEMT using InGaP graded buffer”, Proceeding of Indium Phosphide and Related Materials Conference, pp. 161-164, 2002.
    [19] M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Bohm, G. Trankle, and G. Weimann, “Metamorphic InAlAs/InGaAs HEMT’s on GaAs substrates with a novel composite channel design,” IEEE Electron Device Lett., vol. 17, pp. 273–275, Jun.1996.
    [20] D.M. Gill, B.C. Kane, S.P. Svensson, D.W. Tu, P.N. Uppal, and N.E. Byer, “High performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, pp. 328–330, Jul. 1996.
    [21] S. Bollaert, Y. Cordier, V. Hoel, M. Zaknoune, H. Happy, S. Lepilliet, and A. Cappy, “Metamorphic In0.4Al0.6As/In0.4Ga0.6As HEMTs on GaAs substrate,” IEEE Electron Device Lett., vol. 20, pp. 123–125, Mar. 1999.
    [22] M. Kawano, T. Kuzuhara, H. Kawasaki, F. Sasaki, and H. Tokuda, “InAlAs/InGaAs metamorphic low noise HEMT,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 6–8, Jan. 1997.
    [23] H. Happy, S. Bollaert, H. Foure, and A. Cappy, “Numerical analysis of device performance of metamorphic InyAl1-yAs/InxGa1-xAs (0.3≦x≦0.6) HEMTs on GaAs substrate,” IEEE Trans. Electron Devices, vol. 45, pp. 2089-2095, Oct. 1998.
    [24] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Theron, and Y. Crosnier, “InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage’, IEEE Electron Device Lett.”, vol. 19, pp. 345-347, 1998.
    [25] C. S. Whelan, W. E. Hoke, R. A. McTaggart, P. S. Lyman, P. F. Marsh, R. E. Leoni, S. J. Lichwala, and T. E. Kazior, “High breakdown voltage InAlGaAs/In0.32Ga0.68As metamorphic HEMT for Microwave and mm-wave Power applications”. Proc. IEEE MTT-S Int. Microwave Symposium Digest, June 1999, Anaheim, CA, USA, Vol. 3, pp. 1187-1190.
    [26] W. Contrata, and N. Iwata, “Double-doped In0.35Al0.65As/In0.35Ga0.65 As power heterojunction FET on GaAs substrate with 1 W output power”, IEEE Electron Device Lett., vol. 20, pp. 369-371, 1999.
    [27] H. Fourre, F. Diette, and A. Cappy, “Selective wet etching of lattice matched InGaAs/InAlAs and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol., vol. B14, pp. 3400–3402, Sept./Oct. 1996.
    [28] J. A. del Alamo, M. H. Somerville, M.H; “Breakdown in millimeter-wave power InP HEMTs: a comparison with GaAs pHEMT''s, “ IEEE Journal of Solid-State Circuits, vol. 34, pp. 1204-1211, 1999.
    [29] R. Williams, Modren GaAs Processing Methods, Norwood : Artech House, 1990
    [30] P. J. Tasker and B. Hughes, “Importance of source and drain resistance to the maximum f T of millimeter-wave MODFETs,” IEEE Electron Device Lett., vol. 10, pp. 291-293, 1989.
    [31] R. Anholt, S. Swirhun, “Measurement and Analysis of GaAs Parasitic Capacitances,“ IEEE Trans. Microwave Theory Tech., vol. 39 pp. 1243, 1991.
    [32] G. Dambrine et al, “A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.1511, 1988.
    [33] C. K. Lin, Master Thesis, National Central University, 2001.
    [34] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, 1988.
    [35] S.R. Bahl, J.A. del Alamo, “Physics of breakdown in InAlAs/n+-InGaAs heterostructure field-effect transistors”, IEEE Trans. Electron Devices, vol. 41, pp. 2268-2275, Dec. 1994
    [36] K. Hui, C. Hu, P. George, P.K. Ko, “Impact ionization in GaAs MESFETs”, IEEE Electron Device Letters, vol. 11 , pp. 113-115, Mar. 1990.
    [37] K. L. Tan, P. H. Liu, D. C. Streit, R. Dia, A .C. Han, A. Freudenthal, J. Velebir, K. Stolt, J. Lee, M. Bidenbender, R. Lai, H. Wang, B. Allen, “A manufacturable high performance 0.1-μm pseudomorphic AlGaAs/InGaAs HEMT process for W-band MMICs” IEEE GaAs IC Symposium Technical Digest, 1992, pp. 251-254.
    [38] A. Endoh, Y. Yamashita, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, “High fT 50-nm-gate lattice-matched InAlAs/InGaAs HEMTs” Proc. Int. Conf. on Indium Phosphide and Related Materials, IPRM, 2000, pp. 87-90.
    [39] H. Suehiro, T. Miyata, S. Kuroda, N. Hara, M. Takikawa, IEEE Trans. Electron Devices, 1994; 41:1742.
    [40] Y. Awano, M. Kosugi, K. Kosemura, T. Mimura, M. Abe, IEEE Trans. Electron Devices, 1989, 36:2260.
    [41] H. Rohdin, C. Y. Su, N. Moll, A. Wakita, A. Nagy, V. Robbins, and M. Kauffman, Proceedings of Intl. Conf. on Indium Phosphide Related Materials, 1997; 357.
    [42] C.S. Chang, D. Y. S. Day, S. Chan, “ A analytical two-dimensional simulation for the GaAs MESFET Drain-Induced Barrier Lowering: A Short-Channel Effect” IEEE Trans. Electron Devices, vol. 37, May, 1990, pp. 1182-1186.
    [43] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, 1988.
    [44] T. Enoki, Y. Ishii, T. Tamamura, “ T-gate process and delay time analysis for sub-1/4-μm-gate InAlAs/InGaAs HEMT''s,” Proc. of 3rd Int. Conf. Indium Phosphide and Related Materials, Cardiff, U.K., pp. 371 –376, 1991.
    [45] D. Xu, H. Heiss, S. Kraus, M. Sexl, G. Bohm, G. Trankle, G. Weimann, G. Abstreiter, “High-performance double-modulation-doped InAlAs/InGaAs/InAs HFETs,” IEEE Electron Device Letters, vol. 18, pp.323-326, Jul. 1997.
    [46] L.D. Nguyen, L.E. Larson, U.K. Mishra, “Ultra-high speed modulation-doped field-effect transistors: a tutorial review,” Proc. of IEEE, vol. 80, pp. 494-518, Apr. 1992.
    [47] H. C. Chiu, S. C. Yang, C. K. Lin, M. J. Hwu, H. K. Chiou, Y. J. Chan, “K-Band Monolithic InGaP/InGaAs DCFET Amplifier Using BCB Coplanar Waveguide Technology”, IEEE Electron Device Lett., vol. 25, pp. 253-255, May, 2004.
    [48] J. Kim, W. Ko, S. H. Kim, J. Jeong, and Y. Kwon, “A High-performance 40-85 GHz MMIC SPDT Switch Using FET-Integrated Transmission Line Structure,” IEEE Microwave and Wireless Components Lett., vol. 13, pp. 505–507, Dec. 2003.
    [49] S.F. Chang, W. L. Chen, J. L. Chen, H. W. Kuo, H. Z. Hsu, “New millimeter-wave MMIC switch design using the image-filter synthesis method”, IEEE Microwave and Wireless Components Lett., I, vol. 14 , pp. 103-150, Mar., 2004.
    [50] H. Mizutani and Y. Takayama, “A DC-60 GHz GaAs MMIC switch using novel distributed FET,” IEEE MTT-S Tech. Dig., vol. 1, pp. 439–442, 1997.
    [51] U.K. Mishera, A. S. Brown, L. M. Jelloisan, L. H. Hackett, and M. J. Delaney, “High-performance submicormeter AlInAs-GaInAs HEMTs,” IEEE Electron Device Lett., vol. 9, pp. 41-43, 1988.
    [52] K.H. Duh, P.C. Chao, S. M. J. Liu, P. Ho, M. Y. Kao, and J. M. Ballingall, “A super low noise 0.1 ?m T-gate InAlAs/InGaAs/InP HEMT,” IEEE Microwave and Guided Lett., vol, 1, pp. 114-116, 1991.
    [53] T. Enoki, M. Tomizawa, Y. Umeda, and Y. Ishii, “0.05-mm gate InAlAs/InGaAs high electron mobility transisitor and reduction of its short-channel effects,” Jpn. J. Appl. Phys., vol. 33, pp. 798-803, 1994.
    [54] D.M. Gill, B.C. Kane, S.P. Svensson, D.W. Tu, P.N. Uppal, and N.E. Byer, “High performance, 0.1 μm InAlAs/InGaAs high electron mobility transistors on GaAs,” IEEE Electron Device Lett., vol. 17, pp. 328–330, Jul. 1996.
    [55] N. Harada, S. Kuroda, T. Katakami, K. Hikosaka, T. Mimura, and M. Abe, “Pt-based gate enhancement-mode InAlAs/InGaAs HEMT’s for large-scale integration,” in Proc. 3rd Int. Conf. InP and Rel. Mat., pp. 377–380, 1991.
    [56] K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, “High performance InP-based enhancement-mode HEMT’s using nonalloyed ohmic contacts and Pt-based buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, pp. 252–257, 1996.
    [57] I. Adesida, A. Mahajan, G. Cueva, ”Enhancement-mode InP-based HEMT devices and applications” Indium Phosphide and Related Materials, 1998 International Conference on , 11-15 May 1998, pp.493 – 496.
    [58] A. Mahajan, A, M. Arafa, P. Fay, C. Caneau, and I. Adesida, “Enhancement-mode high electron mobility transistors (E-HEMTs) lattice-matched to InP”, IEEE Trans. Electron Devices, vol. 45, pp. 2422-2429, Dec. 1998
    [59] D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, and I. Adesida, “ High performance 0.35 μm gate-length monolithic enhancement/depletion-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As HEMTs on GaAs substrates” IEEE Electron Device Lett., vol. 22, pp. 364–366, Aug. 2001.
    [60] P. Robin, L, Ride, S. Brown, L. H. Camnitz, G. W. Wicks, J. D. Berry, and L. F. Eastman, “Depletion- and enhancement-mode AlInAs/InGaAs MODFETs with a recessed gate structure,” in Int. GaAs and Related Compounds, Inst. Phys. Conf. Ser., no. 79, Karuizawa, Japan, 1985, pp. 571-576.
    [61] H. Fourre, F. Diette, and A. Cappy, “Selective wet etching of lattice matched InGaAs/InAlAs and metamorphic InGaAs/InAlAs on GaAs using succinic acid/hydrogen peroxide solution,” J. Vac. Sci. Technol., vol. B14, pp. 3400–3402, Sept./Oct. 1996.
    [62] N. Harada, S. Kuroda, and K. Hikosaka, “N-InAlAs/InGaAs HEMT DCFL inverter fabricated using Pt-based gate and photochemical dry etching,” IEICE Trans., vol. 10, pp. 1165–1171, 1992.
    [63] L. Sadwick, C. Kim, K. Tan, and D. Streit, “Schottky barrier heights of n-type and p-type AlInAs,” IEEE Electron Device Lett., vol.18, pp. 626–628, 1997.
    [64] A. Fricke, G. Stareev, T. Kummetz, D. Sowada, J. Mahnss, W. Kowalsky, and K. Ebeling, “1.09-eV Schottky barrier height of nearly ideal Pt/Au contacts directly deposited on n_ and p+n_Al0:48In0:52As layers,” Appl. Phys. Lett., vol. 65, pp. 755–757, 1994.
    [65] H. C. Caery, Devices for integrated circuits, John Willey, 1999
    [66] R. Soares, GaAs MESFET circuit design, Artech House, 1998.
    [67] N. Moll, M. R. Hueschen, and A. Fisher-Colbrie, “Pulsed-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, Jul. 1988.
    [68] J. Dickmann, H. Dambkes, R. Losch, W. Schlapp, J. Bottcher, and H. Kunzel, “Influence of surface layers on the RF-performance of AlInAs-GaInAs HFETs “, IEEE Trans. Microwave and Guided Wave Letters, vol. 2, pp. 472-474, Dec, 1992.
    [69] R. J. Trew and U. K. Mishra, ‘Gate breakdown in MESFETs and HEMTs”, IEEE Electron Device Lett., vol. 12, pp. 524-526, Oct, 1991.
    [70] Y. Hori, M. Kuzuhara, Yuji Ando, and M. Mizuta, “Analysis of electric field distribution in GaAs metal–semiconductor field effect transistor with a field-modulating plate”, J. Appl. Phys. vol. 87, April, pp.3483-3487, 2000.
    [71] J. C. Huang, P. Saledas, J. Wendler, A. Platzker, W. Boulais, S. Shanfield, W. Hoke, P. Lyman, L. Aucoin, A. Miquelarena, C. Bendard and D. Atwood, “A double-recessed Al0.24GaAs/In0.16GaAs pseudomorphic HEMT for Ka-band power applications”, IEEE Electron Device Lett., vol. 14, pp. 456-458, Sep, 1993.
    [72] K. Y. Hur, R.A. Mctaggart, B. W. LeBlanc, W.E. Hoke, P.J. Lemonias, A. B. Miller, T.E. Kazior, and L. M. Aucoin, Technical Digest of the 17th IEEE Gallium Arsenide Integrated Circuit Symposium, San Diego, U.S.A., 29 Oct-1 Nov, 1995, pp. 101-104.
    [73] F. Robin, H. Meier, O. J. Homan and W. Bachtold, Proceeding of the 14th Indium Phosphide and Related Materials Conference, Stockholm, Sweden, 12-16 May, 2002, pp. 221-224.
    [74] R. Grundbacher, I. Adesida, Y. C. Kao, and A.A. Ketterson, “ Single step lithography for double-recess ed gate pseudomorphic high electron mobility transistors”, J. Vac. Sci. Technol. B 15, vol. 1, pp. 49-52, Jan/Feb, 1997.
    [75] J. Li, S.J. Cai, G.Z. Pan, Y.L. Chen, C.P. Wen, and K.L. Wang, “High breakdown voltage GaN FET with field plate”, IEE Electronics Letters, vol. 37, pp.196-196, Feb, 2001.
    [76] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT''s with variable GaInAs channel thickness”IEEE Trans. Electron Devices, vol. 46, pp. 2-9, Jan, 1999.

    QR CODE
    :::