| 研究生: |
吳栢兆 Po-chao Wu |
|---|---|
| 論文名稱: |
河口與近海環境懸浮顆粒物質之探討:顆粒性有機物之來源及懸浮顆粒之重量法測定 Suspended Particulate Matter in the estuarine and coastal environments: origin of organic matter determined from isotopic composition and gravimetric determination of suspended solid |
| 指導教授: |
劉康克
Kon-kee Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 顆粒性有機物 、懸浮顆粒濃度 、氮同位素組成 、淡水河 、碳氮比 |
| 外文關鍵詞: | particulate organic matter, concentration of suspended solid, nitrogen isotopic composition, the Danshuei River, C/N ratio |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
淡水河位於台灣北部,流域經過台北市與新北市,為台灣人口密度最高的地方。都市排放大量之廢水,對淡水河造成嚴重的污染,進而影響河中之懸浮顆粒物質等生地化過程。透過定性與定量分析顆粒物質,不僅可以了解淡水河口顆粒性有機物之來源以及生地化過程,也可以了解淡水河口懸浮顆粒物質之輸送過程。
過去之研究認為在淡水河口中之顆粒性有機物來源有汙水、土壤以及沉積物,然而本研究對前人2009年在重陽橋所測量之結果提出討論與推算。結果發現淡水河口中之汙水不是直接提供顆粒性有機物之來源,而是汙水所含營養鹽經由藻類吸收後,所產生之藻類以及其碎屑,才是主要的顆粒性有機物來源。本研究不僅找出藻類碎屑之特性,並且以此作為新的端成份重新考慮。經由推算後得到2009年2月之顆粒性有機物來源為藻類碎屑與沉積物各佔45.3%、51.3%,土壤佔3.5%。而2009年7月之顆粒性有機物主要來源為藻類碎屑,佔75.3%;沉積物為次要,佔17.3%,其餘則為土壤佔7.5%。
本研究也對河口與近岸海洋環境之懸浮顆粒濃度進行討論,結果顯示河口與海洋環境懸浮顆粒濃度會受到過濾之背景值影響(0.2 ~28 mg)。在這樣作用複雜的環境之下,進行少量體積過濾測量懸浮顆粒濃度時,就必須使用不同體積之樣水,進行重複過濾測定,再由迴歸分析,藉此修正背景值之影響,最後可以得到最可靠之懸浮顆粒濃度。換言之,進行一次之過濾測量結果是很不準確的。
未經背景值修正前,重量法測定結果與OBS資料兩者之相關性與顯著性皆不好(R2 = 0.151, p = 0.046);迴歸修正之後再進行比較,兩者關係提升(R2 = 0.568, p < 0.001 ),顯示迴歸修正之重要。然而OBS資料較重量法結果高出很多,顯示OBS原先之設定可能有問題。在河口或近岸海洋環境這樣複雜的環境下,OBS之校正就必須更加嚴謹,才能得到最佳觀測結果。
The Danshuei River is located in Northern Taiwan and flows through the metropolitan are of the Taipei City and the New Taipei City, the most densely populated area in Taiwan. Large amount of waste is discharged into the Danshuei River and strongly affects the concentrations of suspended organic matter and nutrients. Qualitative and quantitative analyses of suspended particulate matter can not only give us information about the biogeochemical processes, but can also help us understand the transportation process of the suspended solid in the Danshuei River.
In the past, the particulate organic matter (POM) was assumed comprising of anthropogenic wastes, soils and river sediments. However, according to previous observations, it was found that anthropogenic waste not an important source of POM. Because of the high correlation between particulate organic carbon (POC) and chlorophyll-a, we considered that phytodetritus is an important source of particulate organic matter in the Danshuei River. Thus this study defined the properties of phytodetritus and used them to represent a new end-member to calculate the contributions from different sources of POM in the Danshuei estuary. Using a three end member mixing model based on δ15NPN values and C/N ratios, we calculated the fractions from the three major sources of POM,namely, phytodetritus, soils and bed-rock derived sediments, in the estuary. Their contributions were, respectively, 45.4%, 51.8% and 2.8% in February 2009, and 75.3%, 17.3% and 7.5% in July 2009.
This study also investigated the concentrations of suspended solid in the estuarine and coastal environments. The results show that the concentrations of suspended solid derived from the measurements were affected by blanks, which may be contributed by salt or dissolve organic matter retained by the filters. It is necessary to carry out replicated measurements for the concentration of suspended solid and use linear regression to obtain the most reliable results.
It was found that, without blank correction, the correlation between gravimetric results and OBS data (R2 = 0.151, p = 0.046) is insignificant. After correction for the blanks by regression analysis, they were significantly correlated (R2= 0.568, p < 0.001), indicating the importance of regression analysis for blank correction. However, most of the OBS data are overestimated relative to the gravimetric results, indicating problems with the original setting of the OBS. Therefore, calibration of the OBS should be carried out very carefully in order to obtain optimal results in such complicated environments.
英文參考文獻
Ahad, J.M.E., Ganeshram, R.S., Spencer, R.G.M., Uher, G., Upstill-Goddard, R.C., Cowie, G.L., 2006. Evaluating the sources and fate of anthropogenic dissolved inorganic nitrogen (DIN) in two contrasting North Sea estuaries. Science of the Total Environment, 372, 317-333.
Ashkenas, L.R., Johnson, S.L., Gregory, S.V., Tank, J.L., Wollhein, W.M., 2004. A stable isotope tracer study of nitrogen uptake and transformation in an old-growth forest stream. Ecology, 85, 1725-1739.
Barrie, A., Prosser, S.J., 1996. Automated analysis of light-element stable isotopes by isotope ratio mass spectrometer. Marcel Dekker, Inc, New York., 1-46.
Bigeleisen, J., 1949. The relative reaction velocities of isotopes molecules. J. Chem. Phys., 17, 675-678.
Black, K.P., Rosenberg, M.A., 1994. Suspended sand measurements in a turbulent environment: field comparison of optical and pump sampling techniques. Coastal Engineering., 24, 137-150.
Bunt, J. A. C., Larcombe, P., Jago, C. F., 1999. Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter. Cont. shelf Res., 19, 1199-1220.
Cifuentes, L.A., Fogel, M.L., Pennock, J.R., Sharp, J.H., 1989. Seasonal variations in the stable nitrogen isotope ratio of ammonium in the Delaware estuary. Geochim. Cosmochim. Acta, 53, 2713-2721.
Clark, I.a.P.F., 2000. Isotope ratio mass spectrometry. Lewis Publishers, Boca Raton, Florida, 13-16.
Conner, C. S., De Visser, A. M., 1992. A laboratory investigation of particle size effects on an optical backscatterance sensor. Marine Geology., 108, 151-159.
Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R.S., Geider, R.J., Jickells, T., Kuypers, M.M., Langlois, R., Liss, P.S., Liu, S.M., Middelburg, J.J., Moore, C.M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L.L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., Zamora, L., 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320, 893-897.
Fabbricino, M., Petta, L., 2007. Drinking water denitrification in membrane bioreactor/membrane contactor systems. Desalination, 210, 163-174.
Fairbridge, R., 1980. The estuary: its definition and geodynamic cycle. John Wiley & Sons New York, 1-35.
Galloway, J.N., Schlesinger, W.H., Levy, H., Michaels, A., Schnoor, J.L., 1995. Nitrogen Fixation: Anthropogenic Enhancement Environme- ntal Response. Glob Biogeochem Cycles, 9, 235-252.
Goolsby, D.A., Battaglin, W.A., Aulenbach, B.T., Hooper, R.P., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. The Science of the Total Environment, 248, 75-86.
Guillén, J., Palanques, A.,Puig, P., Durrieu de Madron, X., Nyffeler, F., 2000. Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean. Scientia Marine., 64, 427-435.
Hoefs, J., 2009. Stable Isotope Geochemistry. Springer Verlag, Berlin.
Holmes, R.M., McClelland, J.W., Sigman, D.M., Fry, B., Peterson, B.J., 1998. Measuring 15N–NH4+ in marine, estuarine and fresh waters: An adaptation of the ammonia diffusion method for samples with low ammonium concentrations. Marine Chemistry, 60, 235-243.
Huang, W.R., Jones, W.K., 2001. Characteristics of long-term freshwater transport in Apalachicola Bay. Journal of the American Water Resources Association, 37, 605-615.
Junk, G., Svec, H.J., 1958. The absolute abundance of nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta, 14, 234-243.
Kao, S.-J., Liu, K.-K., 2000. Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochem. Cycle, 14, 189-198.
Lehninger, A.L., 1975. Biochemistry. Worth, New York, 1104.
Liu, K.K., 1979. Geochemistry of Inorganic Nitrogen Compounds in Two Marine Environments: The Santa Barbara Basin and the Ocean off Peru University of California Los Angeles, 354.
Liu, K.K., Kaplan, I.R., 1989. Eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limn- ol.Oceanogr, 34, 820-830.
Liu, K. K., Kao, S. J., 2000. Stable carbon and nitrogen isotope systematics in a human-disturbed watershed (Lanyang-Hsi) in Taiwan and the estimation of biogenic particulate organic carbon and nitrogen fluxes. Global Biogeochemical Cycles, 14, 189-198.
Liu, K.K., Kao, S.J., Wen, L.S., Chen, K.L., 2007. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeo- chemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the Total Environment, 382, 103-120.
Liu, K. K., Kao, S. J., 2007. A three end-member mixing model based on isotopic composition and elemental ratio. Terrest. Atmospheric Oceanic Sci., 18, 1067-1075.
Liu, K.K., Seitzinger, S., Mayorga, E., Harrison, J., Ittekkot, V., 2008. Fluxes of nutrients and selected organic pollutants carried by rivers. SCOPE 70. Island Press, Washington D.C., 141-167.
Liu, K.K., Kao, S.J., Chiang K.P., Gong, G.C., Chang, J., Cheng, J.S., Lan, C.Y., 2013. Concentration dependent nitrogen fractionation during ammonium uptake by phytoplankton under an agal bloom condition in the Danshuei estuary, northern Taiwan. Marine Chemistry, 157, 242-252.
Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., Lerman, A., 1993. C, N, P, S global biogeochemical cycles and modeling of global change. In: Wollast, R., Mackenzie, F.T., Chou , L. (Eds.), Interactions of C, N, P and S Biogeochemical cycles and global change. Springer-Verlag, 1-62.
Mariotti, A., 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance. Nature, 303, 685-687.
Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282, 401-450.
Morel, F., M. M., Hering, J.G., 1983. Principles and Applications of Aquatic Chemistry. John Wiley and Sons, inc, New York.
Pai, S.C., Yang, C.C., Riley, J.P., 1990. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Anal. Chim. Acta, 232, 245-349.
Pai, S.C., Tsau, Y.J., Yang, T.I., 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434, 209-216.
Pennock, J.R., Velinsky, D.J., Ludlam, J.M., Sharp, J.H., Fogel, M.L., 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for delta N-15 dynamics under bloom conditions. Limnol. Oceanogr 41, 451-459.
Pritchard, D.W., 1967. What is an estuary: Physical Viewpoint. Washington, D. C.: Estuaries, 3-5.
Schlesinger, W.H., 1991. Biogeochemistry-an analysis of global change. Academic press.
Sigman, D.M., Altabet, M.A., Michener, R., McCorkle, D.C., Fry, B., Holmes, R.M., 1997. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Marine Chemistry, 57, 227-242.
Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., Bohlke, J.K., 2001. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal. Chem, 73, 4145-4153.
Sutherland, T. F., Lane, P. M., Amos, C. L., Downing, J., 2000. The calibration of optical backscatter sensors for suspended sediment of varying darkness levels. Marine Geology., 162,587-597.
Sweeney, R.E., Liu, K.K., Kaplan, I.R., 1978. Organic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen. In: Robinson, B.W. (Ed.), Stable Isotopes in the Earth Science. DSIR, New Zealand, 9-26.
Tieszen, L.L., Boutton, T.W., 1988. Stable isotopes in terrestrial ecosystem research. Springer, Berlin, 167-195.
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., 1997. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecological Applications, 7, 37-750.
Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M., 1997. Human Domination of Earth's Ecosystems. Science, 277, 494-499.
Wada, E., Kadonaga, T., Matsuo, S., 1975. 15N in nitrogen of naturally occurring substances and global assessment of denitrification from isotopic viewpoint. Geochem. J, 9, 139-148.
Wada, E., 1980. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. In: Goldberg, E., Horible, Y., Saruhashi, K. (Eds.), Isotope Marine Chemistry. Uchida-Rokakuho, Tokyo, 375-398.
Wada, E., Minagawa, M., Mizutani, H., Tsuji, T., Imaizumi, R., Karasawa, K., 1987. Biogeochemical studies on the transport of organic matter along the Otsuchi River watershed, Japan. Estuarine Coastal Shelf Sci., 25, 321-336.
Wada, E., Hattori, A., 1991. Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Florida.
Welschemeyer, N.A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnology & Oceanography, 39, 1985-1992.
Wen, L.S., Jiann, K.T., Liu, K.K., 2008. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuarine, Coastal and Shelf Science, 78, 694-704.
Yoshikawa, C., Yamanaka, Y., Nakatsuka, T., 2005. An Ecosystem Model Including Nitrogen Isotopes:Perspectives on a Study of the Marine Nitrogen Cycle. Journal of Oceanography, 61, 921-942.
Zhang, J., 1996. Nutrient elements in large Chinese Estuaries. ContinentalShelf Research, 16, 1023-1045.
中文參考文獻
龔國慶, 1992. 台灣東北海域黑潮鋒面水文化學之研究. 國立台灣大學海洋科學研究所博士論文, 456.
陳鎮東, 1994. 海洋化學 國立編譯館 茂昌圖書有限公司, 229-260.
白書禎, 郭廷瑜, 鐘仕偉, 蘇宗德, 1998. 疊氮修正希巴辣光度測氧法及其在環境監測上應用. 化學(中國化學會) 56, 173-185.
孫毓璋, 彭竟凱, 2001. 大漢溪流域水體環境中重金屬及營養鹽分佈的探討. 台灣海洋學刊, 39、105-120.
陳冠倫, 2001. 水體中懸浮顆粒有機碳、氮同位素之研究:淡水河及東海南部. 國立台灣大學海洋研究所碩士論文, pp. 98.
謝蕙蓮, 2001. 由底棲群聚看淡水河河口生態品質. 台灣海洋學刊, 39、121-134.
彭明德, 2001. 淡水河之硝化現象模擬. 國立臺灣大學土木工程學研究所碩士論文 pp. 89.
黃金山, 2001. 淡水河流域防洪計畫. 台灣海洋學刊, A24-A42.
方天熹, 2001. 溶解態鋁在淡水河河口及近岸海域之分布. 台灣海洋學刊, 39、93-104.
黃蔚人, 2003. 淡水河系中上游河水中氮物種之時空變化. 國立台灣大學海洋研究所碩士論文, pp. 153.
彭宗仁, 劉滄棽, 林幸助, 2006. 穩定同位素在農業及生態環境上之應用. 台灣農業研究, 55-90.
莊竣皓, 2006. 淡水河流域鹼度、酸鹼值與主要離子之時空變化. 國立中央大學水文科學研究所碩士論文, pp. 190.
鄭峻翔, 2010. 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究. 國立中央大學水文科學研究所碩士論文, pp. 187.
鄭宇凡, 2011.濁水溪河口懸浮沉積物輸送之調查研究. 國立中央大學水文科學研究所碩士論文, pp. 239.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-磷酸鹽之測定. CNS 15091-15012, N 17001-15012.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-亞硝酸鹽之測定. CNS 15091-15015, N 17001-15015.
中華民國國家標準檢驗法, 2007. 深層海水檢驗法-矽酸鹽之測定. CNS 15091-15013, N 17001-15013.
中華民國國家標準檢驗法, 2008. 深層海水檢驗法-氨之測定. CNS 15091-15029, N 17001-15029.
中華民國國家標準檢驗法, 2008. 深層海水檢驗法-葉綠素a之測定. CNS 15091-15030, N 17001-15030.