跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖憶華
Yi-Hua Liao
論文名稱: 以光學頻譜分析定性及定量廢水水質特性之研究
指導教授: 廖述良
Shu-Liang Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 光譜分析分光光度計演算法
外文關鍵詞: spectroscopic, spectrophotometer, algorithm
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光譜分析法由於量測快速,在近年來廣被利用在各個領域。其中紫外光/可見光分光度計由於操作簡便,價格亦較為低廉,故使用的範圍更為廣泛。但是由於紫外光/可見光的吸收光譜的譜帶較寬,容易使水樣中吸收峰較接近的成分,產生波形重疊的現象,尤其是像廢水這類成分複雜的水樣較難去定性與定量,因此發展一套可以解析多成分水樣的定性與定量方法,實是為應用在廢水水質監測的重要基礎。
    因此本研究主要是針對廢水的可能組成成分,建立基本的光譜資料庫,以資料庫為基礎,發展一套多成分水樣定性與定量的分析演算法,作為發展廢水水質監測系統的基礎。
    以多成分水樣定性與定量的分析演算法,去解析含有多種吸收成分的水樣,在定性分析演算方面主要是先推估水樣可能包含的成分,並初步推估濃度,然而因定性分析演算的假設係吸收成分間的干擾不嚴重,故當水樣中含有三種以上的成分時,就必須再利用定量分析演算來計算出合理的濃度。
    定量分析演算法可以兩種方式進行,第一種方式為將所有成分的推估濃度規劃求解找出最適值,第二種方式為用實際的吸光度扣除已知濃度的吸光度貢獻後,再逐一解出各個成分的濃度,其結果顯示在含有三種吸收成分的水樣以第一種方式求解出的濃度較接近真實濃度,但在包含四種以上吸收成分的水樣時,兩種方式的解析效果皆不好,推論應是成分之間產生化學反應或是混合之後的物理效應,對吸光度與吸收係數造成干擾。


    Spectroscopy which is a fast method had been applied in many field in recent years. Among them, UV/visible spectrophotometer is easy to handle and the price is also comparatively cheap, so it’s become more and more important . But because the UV/visible absorption spectrum is relatively widely, the spectrum will often overlap, especially when the sample is waste water which has complicate composition, it would be difficult to qualitative and quantitative. Therefore, developing a qualitative and quantitative method to analyze samples which have many composition such as waste water , is the important foundation .
    This research is mainly to set up basic spectrum database and then develop a qualitative and quantitative method using the database. This method has two parts, the one is to qualitative the composition of samples and estimation the concentration approximately, and the other is to quantitative the concentration of samples accurately.
    To measure the absorption spectrum of samples which have one, two, three and four composition respectively, and to calculate the concentration of composition using the method, which had been developed in this research. The results show that it is useful when the composition of samples is only one, two and three, but it is not to work when the composition of samples is complicated.

    第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 光譜原理與種類 3 2.1.1 紅外線光譜分析 4 2.1.2 拉曼光譜分析 4 2.1.3 紫外光/可見光光譜分析 5 2.2 吸收光譜量測原理 6 2.3 光譜分析方法 8 2.4 紫外光/可見光譜於水質檢測的應用 9 2.4.1 有機物的光譜檢測法 10 2.4.2 硝酸鹽氮的光譜檢測法 11 2.5 光譜於遙測環境的利用 12 第三章 研究設備與方法 14 3.1 研究流程 14 3.2 研究設備與材料 15 3.3 建置光譜資料庫 17 3.3.1 成份選擇 18 3.3.2 掃描水樣與光譜資料前處理 22 3.3.3 濃度與吸光度關係的建置 22 3.4光譜多成分定性與定量分析演算法 23 3.4.1光譜多成分定性分析演算法 23 3.4.2光譜多成分定量分析演算法 26 第四章 結果與討論 33 4.1 建置光譜資料庫 33 4.1.1 濃度與吸光度關係式的探討 33 4.1.2 光譜資料庫 35 4.2 光譜多成分定性分析演算法 47 4.2.1 單一成分水樣案例 47 4.2.2 兩成分水樣案例 49 4.2.3 三成分水樣案例 62 4.3 光譜多成分定量分析演算法 64 4.3.1 三成分水樣案例 64 4.3.2 四成分水樣案例 66 4.4 吸光度非線性加成對演算法的影響 68 第五章 結論與建議 71 5.1 結論 71 5.2 建議 73 參考文獻 75

    1. 鄭俊忠, “CFSBR好氧相/缺氧相即時控制系統改良之研究,” 國立中央大學環境工程研究所碩士論文 (2005)。
    2. 李匡邦、許東明、何東英, “光譜化學分析,” 揚智文化(1997)。
    3. 陳德請,吳世揚, “生物光電工程導論,”全華科技圖書股份有限公司 (2003)。
    4. 陳文誠, “以近紅線光譜分析檢測蓮霧糖度之研究,”國立屏東科技大學機械工程所碩士論文 (2000)。
    5. Pons, M. N., S. L. Bonté and O. Potier, “Spectral Analysis and Fingerprinting for Biomedia Characterization,” Journal of Biotechnology Vol. 113, pp. 211–230 (2004).
    6. 何雍, “儀器分析總整理,” 鼎茂圖書(2004)。
    7. 林育菁, “蓮霧及木瓜內部品質之近紅外光檢測,” 國立台灣大學生物產業機電工程學研究所碩士論文 (2002)。
    8. Dobbs, R. A., R. H. Wise and R. B. Dean, “The Use of Ultraviolet Absorbance for Monitoring the Total Organic Carbon Content of Water and Wastewater,” Water Research, Vol. 6, pp. 1173-1180 (1972).
    9. Foster, P. and A. W. Morris, “The Use of Ultra-Violet Absorption Measurements for the Estimation of Organic Pollution in Inshore Sea Waters,” Water Research Bergamon Press, Vol. 5, pp.19-27 (1971).
    10. Mrkva, M., “Automatic U.V.-Control System for Relative Evaluation of Organic Water Pollution,” Water Res. Vol. 9, pp. 587-589 (1975).
    11. Matshé, N. and K. Stumwöhrer, “UV Absorption as Control Parameter fo Biological Treatment plants,” Water Science and Technology, Vol. 33, No. 12, pp. 211-218 (1996).
    12. El Khorassani,H., P. Trebuchon, H. Bitar and O. Thomas, “A Simple UV Spectrophotometer Procedure for the Survey of Industrial Sewage System,” Water Science and Technology, Vol. 39, No. 10-11, pp. 77-82 (1999)
    13. Brookman, S.K.E, “Estimation of Biochemical Oxygen Demand in Slurry and Effluents Using Ultra-violet Spectrophotometry,” Water Research, Vol. 31, No. 2, pp.372-374 (1997).
    14. Vaillant, S., M. F. Pouet and O. Thomas, “Basic Handling of UV for Urban Water Quality Monitoring,” Urban Water, Vol. 4, pp. 273-281 (2002).
    15. Wang, G.S. and S. T. Hsieh, “Monitoring Natural Organic Matter in Water with Scanning Spectrophotometer,” Environment International, Vol. 26 pp. 205-212 (2001).
    16. Roig, B. and O. Thomas, “UV monitoring of sugars during wine making,” Carbohydrate Research, Vol. 338, pp. 79–83 (2003).
    17. Roig, B., C. Gonzalez and O. Thomas, “Monitoring of phenol photodegradation by ultraviolet spectroscopy,” Spectrochimica Acta Part A , Vol. 59, pp. 303-307(2003)
    18. Thomas, O., F. Théraulaz, C. Angel and S. Suryani, “Advanced UV Examination of Wastewater,” Environmental Technology, Vol. 17, pp. 251-261 (1996).
    19. Suzuki, N. and R. Kuroda, “Direct Simultaneous Determination of Nitrate and Nitrite by Ultraviolet Second-derivative Spectrophotometry,” Analyst, Vol. 112, pp. 1077-1079 (1987).
    20. Ojeda, C. B. and F. S. Rojas, “Recent Developments in Derivative Ultraviolet/Visible Absorption Spectrophotometry,” Analytica Chimica Acta, Vol. 518, pp. 1-24 (2004).
    21. 陳繼潘, “太空看台灣,”秋雨文化 (2004)。
    22. 章國威, “遙測分析德基水庫之藻華現象,” 國立中興大學生命科學研究所博士論文 (2003)。
    23. Williams, D.H. and I. Fleming, “Spectroscopic Methods in Organic Chemistry,” 歐亞書局有限公司 (1972).
    24. Gilbert A. S. ,“The Resolution of Bands in Spectroscopy,” Analytical Application of Spectroscopy II, The Royal Society of Chemistry (1991).
    25. 邱永亮與魏勝德, “染色化學,” 財團法人徐氏文教基金會(2000)。

    QR CODE
    :::