跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭惟仁
Wei-Jen Cheng
論文名稱: 結合人工電子耳與助聽器對中文語音辨識率的影響
Effects of Speech Recognition to Chinese-speaking Cochlear Implant Patients Combined with Acoustic Hearing
指導教授: 吳炤民
Chao-Min Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 字詞辨識率人工電子耳基本頻率助聽器聲調辨識率
外文關鍵詞: Word Recognition, Cochlear Implant, Fundamental Frequency, Hearing Aid, Tone Recognition
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要的目的是想對一般植入人工電子耳的聽障者,在背景環境噪音下,提升他們對中文語音的辨識能力。研究指出,語音的基本頻率(Fundamental frequency,F0)與週期性訊息對中文語音辨識非常重要。若能搭配助聽器恢復殘存的低頻聽力,可能會提升對這些訊息的感知。為了瞭解增加低頻語音訊息對一般植入人工電子耳聽障者在背景環境噪音下中文語音辨識率的影響,我們模擬三種不同的測試環境:(1)七位具有正常聽力受測者(Normal hearing subject,NH-subject),一開始只有單耳接收到以四個頻段(Four-channel)連續交替取樣(CIS)編碼策略所模擬的背景噪音下電子耳語音訊息。(2)接著以一低通濾波器模擬助聽器提供的低頻語音訊息,混入原本的電子耳訊息後送至受測者的單耳。(3)最後將這兩種語音訊息分別送至受測者的雙耳中,測試三種模擬環境下他們的語音辨識率。為了驗證模擬實驗所得到的結果,進一步以三位一邊植入電子耳、一邊配戴助聽器的聽障者(Cochlear implant subject,CI-subject)進行三種臨床測試(為了對應三種模擬測試)。初步結果顯示,當噪音環境下的電子耳語音訊息加入助聽器的低頻語音訊息時,正常聽力者與聽障者對中文字詞、聲調的辨識率皆會有所提升(NH-subject;字詞辨識率由3.85%提升至60.86%,聲調辨識率由40.14%提升至97.43%;CI-subject:字詞辨識率由20%提升至37.5%,聲調辨識率由50%提升至90%)。且低頻訊息愈不受噪音污染時,提升效果最明顯。


    The main purpose of this study is to understand how to enhance Chinese speech recognition under the environmental background noise for patients with cochlear implants (CI). Recent studies have shown that fundamental frequency and periodic information of speech signal are important for Chinese speech recognition and perception. This study evaluated the effects of the added low frequency speech signal on Chinese speech recognition under the environmental background noise for normal-hearing (NH) listeners and CI recipients of the Nucleus-24 device with unilateral hearing aid (HA) fitting. Chinese word and tone recognition were measured in seven NH subjects using simulated 4-channel continuous interleaved sampler (CIS) type speech processing strategy under three different conditions; namely, 1) only simulated (CI) signals with modulated Gaussian white noise for monaural stimulation, 2) simulated (CI) signals with modulated Gaussian white noise and simulated HA signals (low-pass speech signals with cutoff frequency of 500 Hz) for monaural stimulation, and 3) simulated (CI) signals with modulated Gaussian white noise to one ear and simulated hearing aid (HA) signals to the other ear for dichotic stimulation. For comparison purpose, Chinese word and tone recognition were also measured in these three CI users using advanced combination encoding (ACE) strategy. A 4dB signal-to-noise ratio (SNR) speech signal was presented to CI users under three similar conditions; namely, 1) one speaker for monaural stimulation (only CI on), 2) on speaker for binaural stimulation (both CI and HA on), and 3) two speakers for binaural stimulation (both CI and HA on). Preliminary results showed that the Chinese word and tone recognition rates of the NH listeners and CI recipients are improved (word and tone recognition rates are improved from 3.85% to 60.86%, 40.14% to 97.43% for NH listeners and 20% to 37.5%, 50% to 90% for CI recipients) when signals for CI with background noise combined with signals of hearing aid, and recognition rates are further improved when clearer low frequency signals were provided.

    目錄 頁次 中文摘要 英文摘要 . 目錄 I 圖目錄 IV 表目錄 VI 第一章 緒論 1 1.1 研究動機 1 1.2 聽覺產生機制 3 1.3 文獻回顧 4 1.4 論文架構 8 第二章 人工電子耳的介紹 10 2.1 人工電子耳的裝置(硬體) 10 2.2 語音處理器的編碼策略(軟體) 11 2.2-1 波形法(Waveform)編碼策略 11 2.2-2 特徵擷取法(Feature extraction)編碼策略 13 2.2-3 最大頻譜能量選取法(N-of-M)編碼策略 15 2.3 影響人工電子耳配戴者對語音辨識率的參數 18 第三章 系統模擬架構 20 3.1 受測者(NH-subject)資料 20 3.2 模擬環境 20 3.3 測試與料 24 3.4 實驗流程 25 3.5 實驗結果 26 3.6 實驗結果檢定 28 3.6-1 配對t檢定(Paired t-Test) 28 3.7 人工電子耳訊號混入高頻訊號 29 3.8 改變第三種模擬測試中的環境因素 34 3.9 操作者介面 36 第四章 臨床實際測試:人工電子耳植入者的測試結果 37 4.1 受測者(CI-subject)資料 37 4.2 實驗環境 37 4.3 測試語料與實驗流程 40 4.4 實驗結果 40 4.5 結果檢定 42 第五章 結果與討論 44 5.1-1模擬實驗結果討論 44 5.1-2 臨床實驗結果討論 49 5.1-3 頭影效應及雙耳效應 52 5.2 臨床測試的問題 53 5.3 人工電子耳能否有效結合助聽器低頻訊息 54 第六章 結論與未來展望 56 6.1 語料庫的編製 56 6.2 模擬及臨床測試上仍須改善處 57 6.3 未來展望 57 參考文獻 59 附錄 A 63 附錄 B 64 附錄 C 65 附錄 D 66 附錄 E 67

    Ching, T. Y. C., Incerti, P., and Hill, M. (2004). ‘‘Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears,’’ Ear Hear. 25, 9–21.
    Chung, K., Zeng, F.-G., Wzltzman, S. (2004). ‘‘Using hearing aid directional microphones and noise reduction algorithms to enhance cochlear implant performance,’’ ARLO. 5(2), 56–61.
    Dillon, H. (2001). “Binaural and bilateral considerations,” in Hearing Aids (Boomerang Press, Sydney, Aus), Chap. 14, pp. 376–380.
    Dorman, M., (1997). “Simulating the effect of cochlear-implant electrode insertion depth on speech understanding,” J. Acoust. Soc. Am. 102, 2993–2996.
    Dorman, M., Loizou, P., and Rainey, D. (1997). “Speech intelligibility as a function of the number channels of stimulation for signal processors using sine-wave and noise-band outputs,” J. Acoust. Soc. Am. 102, 2403–2411.
    Fu, Q.-J., Galvin, J., Wang, X., and Nogaki, G. (2005). “Moderate auditory training can improve speech performance of adult cochlear implant patients,” ARLO. 6(3), 106–111.
    Fu, Q.-J., Horng, M.-J., and Hsu, C.-J. (2004). “Effects of speech processing strategy on Chinese tone recognition by Nucleus-24 cochlear implant patients,” Ear Hear. 25(5), 501–508.
    Fu, Q.-J., Shannon, R., V., and Wang, X. (1998a). “Effects of noise and spectral resolution on vowel and consonant, Acoustic and electric hearing,” J. Acoust. Soc. Am. 104, 3586–3596.
    Fu, Q.-J., Zeng, F.-G., Shannon, R. V., and Soli, S. D. (1998b). “Importance of tonal envelope cues in Chinese speech recognition,” J. Acoust. Soc. Am. 104, 505–510.
    Fu, Q.-J., and Shannon, R., V. (2002). “Frequency Mapping in Cochlear Implants,” Ear Hear. 23(4), 339–348.
    Gelfand, S. (1990). Hearing : an introduction to psychological and physiological acoustics (Marcel Dekker, New York, NY), pp. 194–198.
    Greenwood, D., D. (1990). ”A cochlear frequency-position function for several years-29 years later,“ J. Acoust. Soc. Am. 87, 2592–2605.
    Kent, R., and Read, C. (1992). The Acoustic Analysis of Speech (Singular, San Diego, CA), Chap. 3.
    Kileny, P. (2005). “Speech perception and sound localization with cochlear implant and contralateral hearing aid,” The 5th Asia Pacific Symposium on Cochlear Implant and Related Sciences, Hong Kong.
    Kong, Y.-Y., Stickney, G., and Zeng, F.-G. (2005). “Speech and melody recognition in binaurally combined acoustic and electric hearing,“ J. Acoust. Soc. Am 117, 1351–1361.
    Lan, N., Nie, K.-B., Gao, S.-K., and Zeng, F.-G. (2004). “A novel speech-processing strategy incorporating tonal information for cochlear implants,” IEEE Trans. Biomedical Engineering, 51, 752–760
    Loizou, P. (1999a). “Introduction to Cochlear Implants,” IEEE Engineering in Medicine and Biology, Mag. 18(1), 32–42.
    Loizou, P. (1999b). “Signal Processing Techniques for Cochlear Implants,” IEEE Engineering in Medicine and Biology, Mag. 18(3), 34–46.
    Loizou, P. (2000). “The Effect of parametric variations of cochlear implant processors on speech understanding,” J. Acoust. Soc. Am. 108, 790-802.
    Loizou, P., and Svirsky, M. (2002). “Cochlear implant: signal processing and speech perception,” Speech Research Laboratory Report, Department of Psychology, Indiana University, Indiana.
    Luo, X., and Fu, Q.-J. (2004a). “Enhancing Chinese tone recognition by manipulating amplitude envelope: Implications for cochlear implants,” J. Acoust. Soc. Am. 116, 3659–3667.
    Luo, X., and Fu, Q.-J. (2004b). “Importance of pitch and periodicity to Chinese-speaking cochlear implant patients,” Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 4, pp. iv– 1–4.
    Luo X., and Fu, Q.-J. (2005). “Enhancing Chinese speech recognition for cochlear implant users by using hearing aid in the contralateral ear,” Beijing Biomedical Engineering. (in press).
    Nie, K., Stickney, G., and Zeng, F.-G. (2005). “Encoding frequency modulation to improve cochlear implant performance in noise,” IEEE Trans. Biomedical Engineering, 52, 64–73.
    Parikh, G., and Loizou, P. (2005). “The influence of noise on vowel and consonant cues,” J. Acoust. Soc. Am. 118, 3874–3888.
    Shannon, R. V., Zeng, F-G., Kamath, V., Wygonski, J., and Ekelid, M. (1995).
    ‘‘Speech recognition with primarily temporal cues,’’ Science 270, 303–304.
    Spelman, F. (1999). “The past, present, and future of cochlear prostheses,” IEEE Engineering in Medicine and Biology, Mag. 18(3), 27–33.
    Turner, C. W., Gantz, B. J., Vidal, C., Behrens, A., and Henry, B. (2004). “Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing,” J. Acoust. Soc. Am. 115, 1729–1735.
    Tyler, R. (2005). “Two cochlear implant-what have we learned,” The 5th Asia Pacific Symposium on Cochlear Implant and Related Sciences, Hong Kong.
    王老得、蘇富美 (民68)。“中國語音均衡字彙表之編制研究”,耳鼻喉科醫學會雜誌,14,87–95。
    王南梅、劉樹玉、詹妍玲、黃俊生 (民86)。“人工電子耳兒童之知聽知覺能力研究”,聽語會刊,1–11。
    林永松、陳弘仁、陳順宇 (民86)。“封閉式中文聲母語詞聽閾檢定表的編制”,
    耳鼻喉科醫學會雜誌,33,202–211。
    張智星 (民93)。MATLAB程式設計:入門篇(清蔚科技,新竹)。
    陳美珠、陳柏豪、曾祈福、張斌 (民83)。“評估人工耳蝸植入成效”,語言與聽
    力障礙之頻估,中華民國聽力語言學會主編(心理,台北),頁343–350。
    陳小娟 (民85)。“三至八歲聽障兒童語音聽知覺研究”,特殊教育與復健學報,7, 
    51–78。
    葉旭輝 (民94)。“華語各頻帶對語音理解之重要度分析”,國立陽明大學醫學工程研究所碩士論文。
    楊玉隆 (民90)。生物統計入門(匯華,台北),頁163–200。
    楊惠美、吳俊良 (民94)。“學齡前兒童中文語彙毗鄰測驗的編制與驗證”,台灣耳鼻喉頭頸外科雜誌,40,1–12。
    鄭惟仁、吳炤民 (民94)。“提升人工電子耳植入者中文語音辨識率的策略模擬”,   中華民國九十四年醫學工程年會會議論文。
    劉樹玉、王南梅、黃俊生 (民83)。“人工電子耳使用者的中文語音知覺頻估”,語言與聽力障礙之頻估,中華民國聽力語言學會主編(心理,台北),頁351–359。
    賴亮全、林則彬、林富美譯 (民87)。蓋統生理學:生理及疾病機轉(華杏,台北),頁624–632。
    羅肇錦 (民79)。國語學(五南,台北)。
    許筱曼(民91)。“改變電刺激速率對於人工電子耳兒童漢語語音及聲調辨識的影響” ,國立台北護理學院聽語障礙科學研究所碩士論文。
    陳曉屏(民91)。“可用電極數目及位置對於人工耳蝸兒童中文聲調辨識的影響”,國立台北護理學院聽語障礙科學研究所碩士論文。

    QR CODE
    :::