跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡富雁
Fu-Yan Hu
論文名稱: 波狀水躍流場之水理分析
The Study of Undular Jumps
指導教授: 周憲德
Hsien-Ter Chou
吳祚任
Tso-Ren Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 底床剪應力大渦流紊流模式流體體積法波狀水躍
外文關鍵詞: undular jump, boundary shear stress., large eddy simulation, volume of fluid
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 波狀水躍屬自由邊界問題,本研究以數值模擬及水工模型試驗探討波狀水躍流場特性。模式使用有限體積法離散計算網格,並配合流體體積法決定自由液面,Navier-Stokes equation採用投影法估計,且加入大渦流紊流模式處理紊流剪應力。實驗以洩水閘門產生超臨界流,藉由調整尾水檻控制下游水深,觀察波狀水躍並以模式驗證。
    本研究發現,波狀水躍產生不均勻底床剪應力,波谷下剪應力較強。流場速度變化僅在水流上層,但無渦度產生,故其消能較慢。由流場之動壓分佈,波谷的動壓大於波峯的動壓,造成水面的抬升。


    In order to investigate the flow characteristic of the two-dimensional undular jump, this paper proposes a numerical simulation and conduct a hydraulic physical model to validate the propose scheme. In this paper, the finite volume method and volume of fluid coupled with large eddy simulation technique to simulate the free-surface profile of undular jump. Then, the proposed scheme is applied to the numerical simulation of the physical model. The comparisons between the simulated result and the measured data show that the proposed scheme can reasonably simulation the free surface profile and the velocity distribution of wave crest and wave trough. The results highlight the nonuniformity of the boundary shear stress distributions.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 X 符號表 XI 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 本文架構 3 第二章 文獻回顧 4 2-1 波狀水躍之流況型態 5 2-2 上游流況之研究 7 2-2-1 邊界層發展 7 2-2-2 紊流強度 9 2-3 波狀水躍流場分析之研究 9 2-3-1 波長與波高 9 2-3-2 流速分佈 10 2-3-3 底床剪應力 11 第三章 理論分析與數值方法 12 3-1 模式簡介 12 3-2 控制方程式 13 3-3 紊流模式 14 3-4 數值方法 17 3-4-1 有限體積法 17 3-4-2 流體體積法 19 3-4-3 自由液面的決定 20 3-4-4 投影法 22 3-4-5 程式運算流程 23 3-5 邊界條件及初始條件 23 3-5-1 不可滑動邊界 23 3-5-2 自由面邊界 23 3-5-3 上游入流邊界 24 3-5-4 下游出流邊界 24 3-5-5 啟始條件 25 3-6 網格設計 25 3-7 數值穩定度 25 第四章 水工模型試驗 28 4-1 實驗目的 28 4-2 實驗設備 28 4-3 實驗條件 33 4-4 實驗方法與步驟 34 4-4-1 流速量測 34 4-4-2 實驗步驟 35 4-5 實驗結果 36 4-5-1洩水閘門開口流速 36 4-5-2 實驗波狀水躍特性 38 第五章 結果與討論 42 5-1 穩態分析 42 5-2 決定CS 44 5-3 模式驗證 44 5-3-1 實驗與數值水位 45 5-3-2 實驗與數值速度 45 5-3-3 波長與波高 46 5-3-4 超臨界流水面 48 5-3-5 尾水位 49 5-4 底床剪應力 49 5-5 流速分佈 51 5-6 渦度分佈 53 5-7 紊流強度分佈 54 5-8 壓力分佈 55 5-9 流線分佈 56 5-10 能量分佈 56 5-11 加砂試驗 57 第六章 結論與建議 59 6-1 結論 59 6-2 建議 60 參考文獻 61 附錄一 65 附錄二 69 附錄三 73

    1. 宋杰祥(1992),近年計算流體力學之發展講習會,國立中興大學土木系所,台中。
    2. 陳仁英(1990),「流體體積比之應用於水躍分析」,碩士論文,私立淡江大學水資源及環境工程研究所,淡水。
    3. 曾明性(1995),「分散式平行計算於緊臨渠牆之方柱紊流流場模擬應用」,八十四年電子計算機於土木水利工程應用論文研討會論文集,第397-403頁。
    4. 張仁德(1995),「風經過結構物之數值模擬」,博士論文,國立台灣大學土木工程研究所,台北。
    5. 謝奕生(2000),「流體體積法之應用於水躍分析」,碩士論文,私立淡江大學水資源及環境工程研究所,淡水。
    6. 經濟部水利署(2002),量水設備技術規範草案。
    7. Chow, V. T.,(1969)“Open Channel Hydraulics”, McGraw-Hill, New York.
    8. Chorin, A. J.,(1968)“Numerical solution of the Navier-Stokes equations” Math. Comp., vol. 22, pp.745-762.
    9. Chorin, A. J.,(1969)“On the convergence of discrete approximations of the Navier-Stokes equations”Math. Comp., vol. 23, pp.341-353.
    10. Cabot, W. and P. Moin,(2000)“Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow”Flow Turb. Combust, vol. 63, pp.269-291.
    11. Chandran, K. K. and C. P. Venkatraman,(1985)“Hydraulic design of pump intake for cooling water pumps parli thermal power station(Unit IV), Maharashtra, India.”Hydraulic of Pumping Stations, Paper 11, pp.139-148.
    12. Chanson, H. and J. S. Montes,(1995)“Characteristics of undular hydraulic jump:Experimental apparatus and flow patterns”, J. Hydraulic Engineering, vol. 121, NO. 2, pp.129–144.
    13. Chanson, H. and J. S. Montes,(1998)“Characteristics of undular hydraulic jump:Experiments and analysis”, J. Hydraulic Engineering, vol. 124, NO. 2, pp.192–205.
    14. Chanson, H.,(2000)“Boundary shear stress measurements in undular flows:Application to standing wave bed forms”, Water Resources Research, vol. 36, NO. 10, pp.3063–3076.
    15. Deardorff, J. W.,(1970)“A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Number”Journal of Fluid Mech., vol. 41, NO. 2, pp.453-480.
    16. Hirt, C. W. and B. D. Nichols,(1981)“Volume of Fluid(VOF) Method for the Dynamics of Free Boundaries”,Journal of Computational Physics, vol. 39, pp.201–225.
    17. Harlow, F. H. and J. E. Welch,(1965)“Numerical Calculation of the Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface”, Physics of Fluid, vol. 8, pp.2182–2189.
    18. Jaluria, Y. and K. E. Torrance,(1986)“Computational Heat Transfer”Washington, D. C., Hemisphere.
    19. Lennon, J. M. and D. F. Hill,(2006)“Particle Image Velocity Measurements of Undular and Hydraulic Jumps”,J. Hydraulic Engineering, vol. 132, NO. 12, pp.1283–1294.
    20. Ohtsu, I. and Y. Yasuda,(1994)“Characteristics of Supercritical Flow below Sluice Gate”,J. Hydraulic Engineering, vol. 120, NO. 3, pp.332–346.
    21. Ohtsu, I., Y. Yasuda and H. Gotoh,(2001)“Hydraulic conditions for undular-jump formations”,Journal of Hydraulic Research, vol. 39, NO. 2, pp.203–209.
    22. Ohtsu, I., Y. Yasuda and H. Gotoh,(2003)“Flow Conditions of Undular Hydraulic Jumps in Horizontal Rectangular Channels”,J. Hydraulic Engineering, vol. 129, NO. 12, pp.948–955.
    23. Smagorinsky, J.,(1963)“General circulation experiment with the primitive equations”Month Weather Review, vol. 91, pp.99-164.
    24. Streeter, V. L. and E. B. Wylie,(1981)“Fluid mechanics”McGraw-Hill, New York.
    25. Rider, W. J. and D. B. Kothe,(1998)“Reconstructing Volume Tracking”Journal of Computational Physics, vol. 141, pp.112-152.
    26. Wu, Tso-Ren.,(2004)“A Numerical study of three-dimensional breaking waves and turbulence effects”,Ph.D. Dissertation, Dept. of Civil Engineering, Cornell University, New York.

    QR CODE
    :::